Faculty of Engineering
Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120

: Instructor
Dr. O. Phillips Agboola

Gaussian Elimination

- In general, to solve a system of linear equations using its augmented matrix, we use elementary row operations to arrive at a matrix in a certain form.
- This form is described as follows.

Putting in Row-Echelon Form

- We now discuss a systematic way to put a matrix in row-echelon form using elementary row operations.
- We see how the process might work for a 3×4 matrix.

Putting in Row-Echelon Form—Step 1

- Start by obtaining 1 in the top left corner.
- Then, obtain zeros below that 1 by adding appropriate multiples of the first row to the rows below it.

Putting in Row-Echelon Form—Steps 2 \& 3

- Next, obtain a leading 1 in the next row.
- Then, obtain zeros below that 1 .
- At each stage, make sure every leading entry is to the right of the leading entry in the row above it.
- Rearrange the rows if necessary.

$$
\left[\begin{array}{cccc}
1 & - & - & - \\
0 & - & - & - \\
0 & - & - & -
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & & & - \\
0 & 1 & & - \\
0 & 0 & - & -
\end{array}\right]
$$

Putting in Row-Echelon Form—Step 4

- Continue this process until you arrive at a matrix in row-echelon form.

$$
\left[\begin{array}{llll}
1 & - & - & - \\
0 & - & - & - \\
0 & - & - & -
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & - & - & - \\
0 & 1 & - & - \\
0 & 0 & - & -
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & - & - & - \\
0 & 1 & - & - \\
0 & 0 & 1 & -
\end{array}\right]
$$

Gaussian Elimination

- Once an augmented matrix is in row-echelon form, we can solve the corresponding linear system using back-substitution.
- This technique is called Gaussian elimination, in honor of its inventor, the German mathematician C. F. Gauss.

Solving a System Using Gaussian

 Elimination- To solve a system using Gaussian elimination, we use:

1. Augmented matrix
2. Row-echelon form
3. Back-substitution

Solving a System Using Gaussian Elimination

1. Augmented matrix

- Write the augmented matrix of the system.

2. Row-echelon form

- Use elementary row operations to change the augmented matrix to row-echelon form.

Solving a System Using Gaussian Elimination

3. Back-substitution

- Write the new system of equations that corresponds to the row-echelon form of the augmented matrix and solve by back-substitution.

Example: 3—Solving a System Using

Row-Echelon Form

- Solve the system of linear equations using Gaussian elimination.

$$
\left\{\begin{aligned}
4 x+8 y-4 z & =4 \\
3 x+8 y+5 z & =-11 \\
-2 x+y+12 z & =-17
\end{aligned}\right.
$$

- We first write the augmented matrix of the system.
- Then, we use elementary row operations to put it in row-echelon form.

Example:3—Solving a System Using Row-Echelon Form

$$
\left[\begin{array}{rrrr}
4 & 8 & -4 & 4 \\
3 & 8 & 5 & -11 \\
-2 & 1 & 12 & -17
\end{array}\right]
$$

$$
\xrightarrow{\frac{1}{4} \mathrm{R}_{1}}\left[\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
3 & 8 & 5 & -11 \\
-2 & 1 & 12 & -17
\end{array}\right]
$$

E.g. 3—Solving a System Using RowEchelon Form
$\xrightarrow[R_{3}+2 R_{1} \rightarrow R_{3}]{\text { - } R_{2}-3 R_{1} \rightarrow R_{2}}\left[\begin{array}{rrrr}1 & 2 & -1 & 1 \\ 0 & 2 & 8 & -14 \\ 0 & 5 & 10 & -15\end{array}\right]$
$\xrightarrow{\frac{1}{2} R_{2}}\left[\begin{array}{rrrr}1 & 2 & -1 & 1 \\ 0 & 1 & 4 & -7 \\ 0 & 5 & 10 & -15\end{array}\right]$
E.g. 3-Solving a System Using RowEchelon Form
$\xrightarrow{R_{3}-5 R_{2} \rightarrow R_{3}}\left[\begin{array}{cccc}1 & 2 & -1 & 1 \\ 0 & 1 & 4 & -7 \\ 0 & 0 & -10 & 20\end{array}\right]$
$\xrightarrow{-\frac{1}{10} R_{3}}\left[\begin{array}{rccr}1 & 2 & -1 & 1 \\ 0 & 1 & 4 & -7 \\ 0 & 0 & 1 & -2\end{array}\right]$

Example:3—Solving a System Using Row-Echelon Form

- We now have an equivalent matrix in row-echelon form.
- The corresponding system of equations is:

$$
\left\{\begin{aligned}
x+2 y-z & =1 \\
y+4 z & =-7 \\
z & =-2
\end{aligned}\right.
$$

- We use back-substitution to solve the system.

Example: 3-Solving a System Using

Row-Echelon Form

- $y+4(-2)=-7$

$$
y=1
$$

- $x+2(1)-(-2)=1$

$$
x=-3
$$

- The solution of the system is:

$$
(-3,1,-2)
$$

