Faculty of Engineering
Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120

: Instructor

Dr. O. Phillips Agboola

- Gauss-Jordan Elimination

Putting in Reduced Row-Echelon Form

- If we put the augmented matrix of a linear system in reduced row-echelon form, then we don't need to back-substitute to solve the system.
- To put a matrix in reduced row-echelon form, we use the following steps.
- We see how the process might work for a 3×4 matrix.

Putting in Reduced Row-Echelon

 Form-Step 1- Use the elementary row operations to put the matrix in row-echelon form.

$$
\left[\begin{array}{llll}
1 & - & - & - \\
0 & 1 & - & - \\
0 & 0 & 1 & -
\end{array}\right]
$$

Putting in Reduced Row-Echelon

Form—Step 2

- Obtain zeros above each leading entry by adding multiples of the row containing that entry to the rows above it.

$$
\left[\begin{array}{llll}
1 & - & - & - \\
0 & 1 & - & - \\
0 & 0 & 1 & -
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & - & 0 & - \\
0 & 1 & 0 & - \\
0 & 0 & 1 & -
\end{array}\right]
$$

Putting in Reduced Row-Echelon

 Form—Step 2- Begin with the last leading entry and work up.

$$
\left[\begin{array}{llll}
1 & - & - & - \\
0 & 1 & - & - \\
0 & 0 & 1 & -
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & - & 0 & - \\
0 & 1 & 0 & - \\
0 & 0 & 1 & -
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & - \\
0 & 1 & 0 & - \\
0 & 0 & 1 & -
\end{array}\right]
$$

Gauss-Jordan Elimination

- Using the reduced row-echelon form to solve a system is called Gauss-Jordan elimination.
- We illustrate this process in the next example.
E.g. 4—Solving Using Reduced Row-

Echelon Form

- Solve the system of linear equations, using Gauss-Jordan elimination.

$$
\left\{\begin{aligned}
4 x+8 y-4 z & =4 \\
3 x+8 y+5 z & =-11 \\
-2 x+y+12 z & =-17
\end{aligned}\right.
$$

- In Example 3, we used Gaussian elimination on the augmented matrix of this system to arrive at an equivalent matrix in row-echelon form.
E.g. 4-Solving Using Reduced Row-

Echelon Form

- We continue using elementary row operations on the last matrix in Example 3 to arrive at an equivalent matrix in reduced row-echelon form.

$$
\left[\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
0 & 1 & 4 & -7 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

E.g. 4—Solving Using Reduced Row-

Echelon Form
$\left[\begin{array}{rrrr}1 & 2 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$
$\xrightarrow{R_{1}-2 R_{2} \rightarrow R_{1}}\left[\begin{array}{rrrr}1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$
E.g. 4—Solving Using Reduced RowEchelon Form

- We now have an equivalent matrix in reduced row-echelon form.
- The corresponding system of equations is:

$$
\left\{\begin{array}{l}
x=-3 \\
y=1 \\
z=-2
\end{array}\right.
$$

- Hence, we immediately arrive at the solution ($-3,1,-2$).

