Faculty of Engineering Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120

: Instructor

Dr. O. Phillips Agboola

The Algebra of Matrices

- Thus far, we've used matrices simply for notational convenience when solving linear systems.
- Matrices have many other uses in mathematics and the sciences.
- For most of these applications, a knowledge of matrix algebra is essential.

The Algebra of Matrices

- Like numbers, matrices can be added, subtracted, multiplied, and divided.
- In this section, we learn how to perform these algebraic operations on matrices.

Equality of Matrices

- Two matrices are equal if they have the same entries in the same positions.

Equal Matrices	Unequal Matrices
$\left[\begin{array}{ccc}\sqrt{4} & 2^{2} & e^{0} \\ 0.5 & 1 & 1-1\end{array}\right]=\left[\begin{array}{lll}2 & 4 & 1 \\ \frac{1}{2} & \frac{2}{2} & 0\end{array}\right]$	$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right] \neq\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$

Equality of Matrices

- The matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are equal if and only if:
- They have the same dimension $m \times n$.
- Corresponding entries are equal.

That is,

$$
a_{i j}=b_{i j}
$$

for $i=1,2, \ldots, m$
and $j=1,2, \ldots, n$.

E.g.1—Equal Matrices

- Find a, b, c, and d, if $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 5 & 2\end{array}\right]$
- Since the two matrices are equal, corresponding entries must be the same.
- So, we must have:

$$
a=1, b=3, c=5, d=2
$$

Addition and Subtraction of Matrices

- Two matrices can be added or subtracted if they have the same dimension.
- Otherwise, their sum or difference is undefined.
- We add or subtract the matrices by adding or subtracting corresponding entries.

Scalar Multiplication of Matrices

- To multiply a matrix by a number, we multiply every element of the matrix by that number.
- This is called the scalar product

Sum, Difference, and Scalar Product of

 Matrices- Let:
$-A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be matrices of the same dimension $m \times n$.
$-c$ be any real number.

Sum of Matrices

- The sum $A+B$ is the $m \times n$ matrix obtained by adding corresponding entries of A and B.

$$
A+B=\left[a_{i j}+b_{i j}\right]
$$

Difference of Matrices

- The difference $A-B$ is the $m \times n$ matrix obtained by subtracting corresponding entries of A and B.

$$
A-B=\left[a_{i j}-b_{i j}\right]
$$

Scalar Product of Matrices

- The scalar product $c A$ is the $m \times n$ matrix obtained by multiplying each entry of A by C.

$$
c A=\left[c a_{i j}\right]
$$

E.g. 2-Pertorming Algebraic Operations in Matrices

- Let:

$$
\begin{array}{ll}
A=\left[\begin{array}{cc}
2 & -3 \\
0 & 5 \\
7 & -\frac{1}{2}
\end{array}\right] & B=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1 \\
2 & 2
\end{array}\right] \\
C=\left[\begin{array}{ccc}
7 & -3 & 0 \\
0 & 1 & 5
\end{array}\right] & D=\left[\begin{array}{ccc}
6 & 0 & -6 \\
8 & 1 & 9
\end{array}\right]
\end{array}
$$

- Carry out each indicated operation, or explain why it cannot be performed.
(a) $A+B$
(b) $C-D$
(c) $C+A$
(d) $5 A$

E.g. 2—Performing Algebraic Operations in Matrices

- (a)

$$
A+B=\left[\begin{array}{cc}
2 & -3 \\
0 & 5 \\
7 & -\frac{1}{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
-3 & 1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{cc}
3 & -3 \\
-3 & 6 \\
9 & \frac{3}{2}
\end{array}\right]
$$

(b)

$$
\begin{aligned}
C-D & =\left[\begin{array}{rrr}
7 & -3 & 0 \\
0 & 1 & 5
\end{array}\right]-\left[\begin{array}{rrr}
6 & 0 & -6 \\
8 & 1 & 9
\end{array}\right] \\
& =\left[\begin{array}{rrr}
1 & -3 & 6 \\
-8 & 0 & -4
\end{array}\right]
\end{aligned}
$$

E.g. 2—Performing Algebraic Operations in Matrices

- (c) $C+A$ is undefined because we can't add matrices of different dimensions.
- (d)

$$
5 A=5\left[\begin{array}{rr}
2 & -3 \\
0 & 5 \\
7 & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{rr}
10 & -15 \\
0 & 25 \\
35 & -\frac{5}{2}
\end{array}\right]
$$

Addition and Scalar Multiplication of Matrices

- The following properties follow from:
- The definitions of matrix addition and scalar multiplication.
- The corresponding properties of real numbers.

Properties of Addition and Scalar Multiplication
 - Let A, B, and C be $m \times n$ matrices and let c and d be scalars.

$A+B=B+A$	Commutative Property of Matrix Addition
$(A+B)+C=A+(B+C)$	Associative Property of Matrix Addition
$c(d A)=(c d) A$	Associative Property of Scalar Multiplication
$(c+d) A=c A+d A$	Distributive Properties of Scalar Multiplication
$c(A+B)=c A+c B$	

E.g. 3-Solving a Matrix Equation

- Solve the matrix equation

$$
2 X-A=B
$$

for the unknown matrix X, where:

$$
A=\left[\begin{array}{cc}
2 & 3 \\
-5 & 1
\end{array}\right] \quad B=\left[\begin{array}{cc}
4 & -1 \\
1 & 3
\end{array}\right]
$$

E.g. 3-Solving a Matrix Equation

- We use the properties of matrices to solve for X.

$$
\begin{aligned}
2 X-A & =B \\
2 X & =B+A \\
X & =1 / 2(B+A)
\end{aligned}
$$

E.g. 3-Solving a Matrix Equation

- Thus,

$$
\begin{aligned}
X & =\frac{1}{2}\left(\left[\begin{array}{cc}
4 & -1 \\
1 & 3
\end{array}\right]+\left[\begin{array}{cc}
2 & 3 \\
-5 & 1
\end{array}\right]\right) \\
& =\frac{1}{2}\left[\begin{array}{cc}
6 & 2 \\
-4 & 4
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & 1 \\
-2 & 2
\end{array}\right]
\end{aligned}
$$

- Multiplication of Matrices

Multiplication of Matrices

- Multiplying two matrices is more difficult to describe than other matrix operations.
- In later examples, we will see why taking the matrix product involves a rather complex procedure-which we now describe.

Multiplication of Matrices

- First, the product $A B$ (or $A \cdot B$) of two matrices A and B is defined only when:
- The number of columns in A is equal to the number of rows in B.

Multiplication of Matrices

- This means that, if we write their dimensions side by side, the two inner numbers must match:

Multiplication of Matrices

- If the dimensions of A and B match in this fashion, then the product $A B$ is a matrix of dimension $m \times k$.
- Before describing the procedure for obtaining the elements of $A B$, we define the inner product of a row of A and a column of B.

Inner Product

- For example, taking the inner product of $\left[\begin{array}{lll}2 & -1 & 0\end{array}\right]$ and $[5]$ gives:
$2 \cdot 5+(-1) \cdot 4+0 \cdot(-3)+4 \cdot 1 / 2=8$

Matrix Multiplication

- If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and $B=\left[b_{i j}\right]$ an $n \times k$ matrix, their product is the $m \times k$ matrix

$$
C=\left[c_{i j}\right]
$$

where $c_{i j}$ is the inner product
of the i th row of A and the j th column of B.

- We write the product as $C=A B$

Multiplication of Matrices

- This definition of matrix product says that each entry in the matrix $A B$ is obtained from a row of A and a column of B, as follows.

Multiplication of Matrices

- The entry $c_{i j}$ in the i th row and j th column of the matrix $A B$ is obtained by:
- Multiplying the entries in the ith row of A with the corresponding entries in the j th column of B.
- Adding the results.

E.g. 4-Multiplying Matrices

- Let

$$
A=\left[\begin{array}{cc}
1 & 3 \\
-1 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{rrr}
-1 & 5 & 2 \\
0 & 4 & 7
\end{array}\right]
$$

Calculate, if possible, the products $A B$ and $B A$.

E.g. 4-Multiplying Matrices

- Since A has dimension 2×2 and B has dimension 2×3, the product $A B$ is defined and has dimension 2×3.
- We can thus write:

$$
A B=\left[\begin{array}{cc}
1 & 3 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ccc}
-1 & 5 & 2 \\
0 & 4 & 7
\end{array}\right]=\left[\begin{array}{lll}
? & ? & ? \\
? & ? & ?
\end{array}\right]
$$

- The question marks must be filled in using the rule defining the product of two matrices.

E.g. 4-Multiplying Matrices

- If we define $C=A B=\left[c_{i j}\right]$, the entry c_{11} is the inner product of the first row of A and the first column of B :

$$
\left[\begin{array}{cc}
1 & 3 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ccc}
-1 & 5 & 2 \\
0 & 4 & 7
\end{array}\right] 1 \cdot(-1)+3 \cdot 0=-1
$$

- Similarly, we calculate the remaining entries of the product as follows.

E.g. 4-Multiplying Matrices

Entry	Inner Product of	Value	Product Matrix
c_{12}	$\left[\begin{array}{ll}1 & 3 \\ -1 & 0\end{array}\right]\left[\begin{array}{rrr}-1 & 5 & 2 \\ 0 & 4 & 7\end{array}\right]$	$1 \cdot 5+3 \cdot$ 4 $=17$	$\left[\begin{array}{lll}-1 & 17\end{array}\right]$
c_{13}	$\left[\begin{array}{ll}1 & 3 \\ -1 & 0\end{array}\right]\left[\begin{array}{rrr}-1 & 5 & 2 \\ 0 & 4 & 7\end{array}\right]$	$1 \cdot 2+3 \cdot$ 7 $=23$	$\left[\begin{array}{lll}-1 & 17 & 23\end{array}\right]$

E.g. 4-Multiplying Matrices

Entry	Inner Product of	Value	Product Matrix
c_{21}	$\left[\begin{array}{rr}1 & 3 \\ -1 & 0\end{array}\right]\left[\begin{array}{rrr}-1 & 5 & 2 \\ 0 & 4 & 7\end{array}\right]$	$(-1) \cdot(-1)$ $+0 \cdot 0=1$	$\left[\begin{array}{rr}-1 & 17 \\ 1 & 23\end{array}\right]$
c_{22}	$\left[\begin{array}{rr}1 & 3 \\ -1 & 0\end{array}\right]\left[\begin{array}{rrr}-1 & 5 & 2 \\ 0 & 4 & 7\end{array}\right]$	$(-1) \cdot 5$ $+0 \cdot 4=-5$	$\left[\begin{array}{rrr}-1 & 17 & 23 \\ 1 & -5\end{array}\right]$
c_{23}	$\left[\begin{array}{rr}1 & 3 \\ -1 & 0\end{array}\right]\left[\begin{array}{rrr}-1 & 5 & 2 \\ 0 & 4 & 7\end{array}\right]$	$(-1) \cdot 2$ $+0 \cdot 7=-2$	$\left[\begin{array}{rrr}-1 & 17 & 23 \\ 1 & -5 & -2\end{array}\right]$

E.g. 4-Multiplying Matrices

- Thus, we have:

$$
A B=\left[\begin{array}{rrr}
-1 & 17 & 23 \\
1 & -5 & -2
\end{array}\right]
$$

- However, the product $B A$ is not defined-because the dimensions of B and A are 2×3 and 2×2.
- The inner two numbers are not the same.
- So, the rows and columns won't match up when we try to calculate the product.
- Properties of Matrix Multiplication

Properties of Matrix Multiplication

- Although matrix multiplication is not commutative, it does obey the Associative and Distributive Properties.

Properties of Matrix Multiplication

- Let A, B, and C be matrices for which the following products are defined.
- Then,

$$
\begin{array}{c|c}
A(B C)=(A B) C & \begin{array}{c}
\text { Associative } \\
\text { Property }
\end{array} \\
\hline A(B+C)=A B+A C & \text { Distributive } \\
(B+C) A=B A+C A & \text { Property }
\end{array}
$$

Properties of Matrix Multiplication

- The next example shows that, even when both $A B$ and $B A$ are defined, they aren't necessarily equal.
- This result proves that matrix multiplication is not commutative.

E.g. 5-Matrix Multiplication Is Not

 Commutative- Let

$$
A=\left[\begin{array}{cc}
5 & 7 \\
-3 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
1 & 2 \\
9 & -1
\end{array}\right]
$$

- Calculate the products $A B$ and $B A$.
- Since both matrices A and B have dimension 2×2, both products $A B$ and $B A$ are defined, and each product is also a 2×2 matrix.

E.g. 5—Matrix Multiplication Is Not

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
5 & 7 \\
-3 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
9 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
5 \cdot 1+7 \cdot 9 & 5 \cdot 2+7 \cdot(-1) \\
(-3) \cdot 1+0 \cdot 9 & (-3) \cdot 2+0 \cdot(-1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
68 & 3 \\
-3 & -6
\end{array}\right]
\end{aligned}
$$

E.g. 5-Matrix Multiplication Is Not Commutative

$$
\begin{aligned}
B A & =\left[\begin{array}{cc}
1 & 2 \\
9 & -1
\end{array}\right]\left[\begin{array}{cc}
5 & 7 \\
-3 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 \cdot 5+2 \cdot(-3) & 1 \cdot 7+2 \cdot 0 \\
9 \cdot 5+(-1) \cdot(-3) & 9 \cdot 7+(-1) \cdot 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & 7 \\
48 & 63
\end{array}\right]
\end{aligned}
$$

- This shows that, in general, $A B \neq B A$.
- In fact, in this example, $A B$ and $B A$ don't even have an entry in common.
- Applications of

Matrix Multiplication

Applications of Matrix Multiplication

- We now consider some applied examples that give some indication of why mathematicians chose to define the matrix product in such an apparently bizarre fashion.
- The next example shows how our definition of matrix product allows us to express a system of linear equations as a single matrix equation.
E.g. 6—Writing a Linear System as a Matrix Equation
- Show that this matrix equation is equivalent to the system of equations
in Example 2 of Section 7.1.

$$
\left[\begin{array}{ccc}
1 & -1 & 3 \\
1 & 2 & -2 \\
3 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
10 \\
14
\end{array}\right]
$$

E.g. 6-Writing a Linear System as a Matrix Equation

- If we perform matrix multiplication on the left side of the equation, we get:

$$
\left[\begin{array}{c}
x-y+3 z \\
x+2 y-2 z \\
3 x-y+5 z
\end{array}\right]=\left[\begin{array}{c}
4 \\
10 \\
14
\end{array}\right]
$$

E.g. 6-Writing a Linear System as a Matrix Equation

- Since two matrices are equal only if their corresponding entries are equal, we equate entries to get:

$$
\left\{\begin{array}{r}
x-y+3 z=4 \\
x+2 y-2 z=10 \\
3 x-y+5 z=14
\end{array}\right.
$$

- This is exactly the system of equations in Example 2 of Section 7.1.

