Faculty of Engineering Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120

: Instructor
Dr. O. Phillips Agboola

- Inverses of Matrices and Matrix Equations

Introduction

- In the preceding section, we saw that, when the dimensions are appropriate, matrices can be added, subtracted, and multiplied.
- Here, we investigate division of matrices.
- With this operation, we can solve equations that involve matrices.
- The Inverse of a Matrix

Identity Matrices

- First, we define identity matrices.
- These play the same role for matrix multiplication as the number 1 does for ordinary multiplication of numbers.
- That is,

$$
1 \cdot a=a \cdot 1=a
$$

for all numbers a.

Identity Matrices

- In the following definition, the term main diagonal refers to the entries of a square matrix whose row and column numbers are the same.
- These entries stretch diagonally down the matrix-from top left to bottom right.

Identity Matrix—Definition

- The identity matrix I_{n} is the $n \times n$ matrix for which:
- Each main diagonal entry is a 1.
- All other entries are 0.

Identity Matrices

- Thus, the

$$
2 \times 2,3 \times 3, \text { and } 4 \times 4
$$

identity matrices are:

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Identity Matrices

- Identity matrices behave like the number 1 in the sense that

$$
A \cdot I_{n}=A \quad \text { and } \quad I_{n} \cdot B=B
$$

whenever these products are defined.

E.g. 1-Identity Matrices

- The following matrix products show how:
- Multiplying a matrix by an identity matrix of the appropriate dimension leaves the matrix unchanged.
E.g. 1—Identity Matrices

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 5 & 6 \\
-1 & 2 & 7
\end{array}\right]=\left[\begin{array}{ccc}
3 & 5 & 6 \\
-1 & 2 & 7
\end{array}\right]} \\
{\left[\begin{array}{lll}
-1 & 7 & \frac{1}{2} \\
12 & 1 & 3 \\
-2 & 0 & 7
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 7 & \frac{1}{2} \\
12 & 1 & 3 \\
-2 & 0 & 7
\end{array}\right]}
\end{gathered}
$$

Inverse of a Matrix

- If A and B are $n \times n$ matrices, and if $A B=B A=I_{n}$, we say that B is the inverse of A, and we write $B=A^{-1}$.
- The concept of the inverse of a matrix is analogous to that of the reciprocal of a real number.

Inverse of a Matrix—Definition

- Let A be a square $n \times n$ matrix.
- If there exists an $n \times n$ matrix A^{-1} with the property that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

then we say that A^{-1} is the inverse of A.

E.g. 2-Verifying that a Matrix Is an Inverse

- Verify that B is the inverse of A, where:
$A=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right] \quad$ and $\quad B=\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]$
- We perform the matrix multiplications to show that $A B=I$ and $B A=I$.

E.g. 2-Verifying that a Matrix Is an Inverse

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right]} \\
& =\left[\begin{array}{ll}
2 \cdot 3+1(-5) & 2(-1)+1 \cdot 2 \\
5 \cdot 3+3(-5) & 5(-1)+3 \cdot 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

E.g. 2-Verifying that a Matrix Is an Inverse

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
5 & 3
\end{array}\right]} \\
& =\left[\begin{array}{ll}
3 \cdot 2+(-1) 5 & 3 \cdot 1+(-1) 3 \\
(-5) 2+2 \cdot 5 & (-5) 1+2 \cdot 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- Finding the Inverse of a 2×2 Matrix

Finding the Inverse of a 2×2 Matrix

- The following rule provides a simple way for finding the inverse of a 2×2 matrix, when it exists.
- For larger matrices, there's a more general procedure for finding inverses-which we consider later in this section.

Inverse of a 2×2 Matrix

- If

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

- If $a d-b c=0$, then A has no inverse.

E.g. 3-Finding the Inverse of a 2×2 Matrix

- Let A be the matrix

$$
A=\left[\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right]
$$

- Find A^{-1} and verify that

$$
A A^{-1}=A^{-1} A=I_{2}
$$

E.g. 3-Finding the Inverse of a 2×2 Matrix

- Using the rule for the inverse of a 2×2 matrix, we get:

$$
\begin{aligned}
A^{-1} & =\frac{1}{4 \cdot 3-5 \cdot 2}\left[\begin{array}{rr}
3 & -5 \\
-2 & 4
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{rr}
3 & -5 \\
-2 & 4
\end{array}\right]=\left[\begin{array}{rr}
\frac{3}{2} & -\frac{5}{2} \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

- To verify that this is indeed the inverse of A, we calculate $A A^{-1}$ and $A^{-1} A$.
E.g. 3-Finding the Inverse of a 2×2 Matrix

$$
\begin{aligned}
A A^{-1} & =\left[\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right]\left[\begin{array}{rr}
3 & -\frac{5}{2} \\
-1 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 \cdot \frac{3}{2}+5(-1) & 4\left(-\frac{5}{2}\right)+5 \cdot 2 \\
2 \cdot \frac{3}{2}+3(-1) & 2\left(-\frac{5}{2}\right)+3 \cdot 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
A^{-1} A & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{5}{2} \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{3}{2} \cdot 4+\left(-\frac{5}{2}\right) 2 & \frac{3}{2} \cdot 5+\left(-\frac{5}{2}\right) 3 \\
(-1) 4+2 \cdot 2 & (-1) 5+2 \cdot 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Determinant of a Matrix

- The quantity $a d-b c$ that appears in the rule for calculating the inverse of a 2×2 matrix is called the determinant of the matrix.
- If the determinant is 0 , the matrix does not have an inverse (since we cannot divide by 0).
- Finding the Inverse of an $n \times n$ Matrix

Finding the Inverse of an $\mathrm{n} \times \mathrm{n}$ Matrix

- For 3×3 and larger square matrices, the following technique provides the most efficient way to calculate their inverses.

Finding the Inverse of an $\mathrm{n} \times \mathrm{n}$ Matrix

- If A is an $n \times n$ matrix, we first construct the $n \times$ $2 n$ matrix that has the entries of A on the left and of the identity matrix I_{n} on the right:

$$
\left[\begin{array}{cccc:cccc}
a_{11} & a_{12} & \cdots & a_{1 n} & 1 & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & a_{2 n} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Finding the Inverse of an $\mathrm{n} \times \mathrm{n}$ Matrix

- We then use the elementary row operations on this new large matrix to change the left side into the identity matrix.
- This means that we are changing the large matrix to reduced row-echelon form.

$$
\left[\begin{array}{cccc:cccc}
a_{11} & a_{12} & \cdots & a_{1 n} & 1 & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & a_{2 n} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Finding the Inverse of an $\mathrm{n} \times \mathrm{n}$ Matrix

- The right side is transformed automatically into A^{-1}.
- We omit the proof of this fact.

$$
\left[\begin{array}{cccc:cccc}
a_{11} & a_{12} & \cdots & a_{1 n} & 1 & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & a_{2 n} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & 0 & 0 & \cdots & 1
\end{array}\right]
$$

E.g. 4—Finding the Inverse of a 3×3 Matrix

Let A be the matrix

$$
A=\left[\begin{array}{rrr}
1 & -2 & -4 \\
2 & -3 & -6 \\
-3 & 6 & 15
\end{array}\right]
$$

(a) Find A^{-1}.
(b) Verify that $A A^{-1}=A^{-1} A=I_{3}$.

E.g. 4-Inverse of a 3×3 Matrix

Example (a)

- We begin with the 3×6 matrix whose left half is A and whose right half is the identity matrix.

$$
\left[\begin{array}{rrr:rrr}
1 & -2 & -4 & 1 & 0 & 0 \\
2 & -3 & -6 & 0 & 1 & 0 \\
-3 & 6 & 15 & 0 & 0 & 1
\end{array}\right]
$$

- We then transform the left half of this new matrix into the identity matrix-by performing the following sequence of elementary row operations on the entire new matrix.

Example (a)
E.g. 4-Inverse of a 3×3 Matrix
$\xrightarrow[R_{3}+3 R_{1} \rightarrow R_{3}]{R_{2}-2 R_{1}}\left[\begin{array}{rrr:rrr}1 & -2 & -4 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 3 & 3 & 0 & 1\end{array}\right]$ $\xrightarrow{\frac{1}{3} R_{3}}\left[\begin{array}{rrr:rrr}1 & -2 & -4 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & \frac{1}{3}\end{array}\right]$

Example (a)
E.g. 4-Inverse of a 3×3 Matrix
$\xrightarrow{R_{1}+2 R_{2} \rightarrow R_{1}}\left[\begin{array}{lll:rrr}1 & 0 & 0 & -3 & 2 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & \frac{1}{3}\end{array}\right]$
$\xrightarrow{R_{2}-2 R_{3} \rightarrow R_{2}}\left[\begin{array}{rrr:rrr}1 & 0 & 0 & -3 & 2 & 0 \\ 0 & 1 & 0 & -4 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 & 1 & 0 & \frac{1}{3}\end{array}\right]$

Example (a)

$$
\text { E.g. 4-Inverse of a } 3 \times 3 \text { Matrix }
$$

- We have now transformed the left half of this matrix into an identity matrix.
- This means we've put the entire matrix in reduced row-echelon form.

Example (a)

E.g. 4-Inverse of a 3×3 Matrix

- Note that, to do this in as systematic a fashion as possible, we first changed the elements below the main diagonal to zeros-just as we would if we were using Gaussian elimination.

$$
\left[\begin{array}{rrr:rrr}
1 & -2 & -4 & 1 & 0 & 0 \\
2 & -3 & -6 & 0 & 1 & 0 \\
-3 & 6 & 15 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr:rrr}
1 & -2 & -4 & 1 & 0 & 0 \\
0 & 1 & 2 & -2 & 1 & 0 \\
0 & 0 & 3 & 3 & 0 & 1
\end{array}\right]
$$

Example (a)

E.g. 4-Inverse of a 3×3 Matrix

- Then, we changed each main diagonal element to a 1 by multiplying by the appropriate constant(s).

$$
\left[\begin{array}{rrr:rrr}
1 & -2 & -4 & 1 & 0 & 0 \\
0 & 1 & 2 & -2 & 1 & 0 \\
0 & 0 & 3 & 3 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr:rrr}
1 & -2 & -4 & 1 & 0 & 0 \\
0 & 1 & 2 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & \frac{1}{3}
\end{array}\right]
$$

Example (a)

E.g. 4-Inverse of a 3×3 Matrix

- Finally, we completed the process by changing the remaining entries on the left side to zeros.

$$
\left[\begin{array}{lll:lll}
1 & 0 & 0 & -3 & 2 & 0 \\
0 & 1 & 2 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{rrr:rrr}
1 & 0 & 0 & -3 & 2 & 0 \\
0 & 1 & 0 & -4 & 1 & -\frac{2}{3} \\
0 & 0 & 1 & 1 & 0 & \frac{1}{3}
\end{array}\right]
$$

Example (a)

E.g. 4-Inverse of a 3×3 Matrix

- The right half is now A^{-1}.

$$
A^{-1}=\left[\begin{array}{rrr}
-3 & 2 & 0 \\
-4 & 1 & -\frac{2}{3} \\
1 & 0 & \frac{1}{3}
\end{array}\right]
$$

E.g. 4-Inverse of a 3×3 Matrix

Example (b)

- We calculate $A A^{-1}$ and $A^{-1} A$, and verify that both products give the identity matrix I_{3}.

$$
\begin{aligned}
& A A^{-1}=\left[\begin{array}{rrr}
1 & -2 & -4 \\
2 & -3 & -6 \\
-3 & 6 & 15
\end{array}\right]\left[\begin{array}{rrr}
-3 & 2 & 0 \\
-4 & 1 & -\frac{2}{3} \\
1 & 0 & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& A^{-1} A=\left[\begin{array}{rrr}
-3 & 2 & 0 \\
-4 & 1 & -\frac{2}{3} \\
1 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{rrr}
1 & -2 & -4 \\
2 & -3 & -6 \\
-3 & 6 & 15
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

E.g. 5-Matrix that Does Not Have an Inverse

- Find the inverse of the matrix.

$$
\left[\begin{array}{rrr}
2 & -3 & -7 \\
1 & 2 & 7 \\
1 & 1 & 4
\end{array}\right]
$$

E.g. 5-Matrix that Does Not Have an Inverse

$$
\left[\begin{array}{rrr:lll}
2 & -3 & -7 & 1 & 0 & 0 \\
1 & 2 & 7 & 0 & 1 & 0 \\
1 & 1 & 4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{\leftrightarrow} \leftrightarrow R_{2}}\left[\begin{array}{rrr:rrr}
1 & 2 & 7 & 0 & 1 & 0 \\
2 & -3 & -7 & 1 & 0 & 0 \\
1 & 1 & 4 & 0 & 0 & 1
\end{array}\right]
$$

E.g. 5-Matrix that Does Not Have an Inverse

E.g. 5-Matrix that Does Not

Have an Inverse

$\xrightarrow[\substack{R_{1}-2 R_{2} \rightarrow R_{1}}]{R_{3}+R_{2} \rightarrow R_{3}}\left[\begin{array}{lll:rrr}1 & 0 & 1 & \frac{2}{7} & \frac{3}{7} & 0 \\ 0 & 1 & 3 & -\frac{1}{7} & 1 & 0 \\ 0 & 0 & 0 & -\frac{1}{7} & -\frac{5}{7} & 1\end{array}\right]$

- At this point, we would like to change the 0 in the $(3,3)$ position of this matrix to a 1 , without changing the zeros in the $(3,1)$ and $(3,2)$ positions.

E.g. 5-Matrix that Does Not Have an Inverse

- However, there is no way to accomplish this.
- No matter what multiple of rows 1 and/or 2 we add to row 3, we can't change the third zero in row 3 without changing the first or second zero as well.
E.g. 5-Matrix that Does Not Have an Inverse
$\xrightarrow[\substack{R_{1}-2 R_{2} \rightarrow R_{1}}]{R_{3}+R_{2} \rightarrow R_{3}}\left[\begin{array}{lll:rrr}1 & 0 & 1 & \frac{2}{7} & \frac{3}{7} & 0 \\ 0 & 1 & 3 & -\frac{1}{7} & \frac{2}{7} & 0 \\ 0 & 0 & 0 & -\frac{1}{7} & -\frac{5}{7} & 1\end{array}\right]$
- Thus, we cannot change the left half to the identity matrix.
- So, the original matrix doesn't have an inverse.

Matrix that Does Not Have an Inverse

- If we encounter a row of zeros on the left when trying to find an inverse-as in Example 5-then the original matrix does not have an inverse.

