Faculty of Engineering Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120

: Instructor
Dr. O. Phillips Agboola

- Matrix Equations

Matrix Equations

- We saw in Example 6 in Section 7.2 that a system of linear equations can be written as a single matrix equation.

Matrix Equations

- For example, the system

Coefficient Matrix

- If we let
$A=\left[\begin{array}{rrr}1 & -2 & -4 \\ 2 & -3 & -6 \\ -3 & 6 & 15\end{array}\right] \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{l}7 \\ 5 \\ 0\end{array}\right]$
this matrix equation can be written as:

$$
A X=B
$$

- The matrix A is called the coefficient matrix.

Matrix Equations

- We solve this matrix equation by multiplying each side by the inverse of A-provided the inverse exists.

$$
\begin{aligned}
A X & =B \\
A^{-1}(A X) & =A^{-1} B \\
\left(A^{-1} A\right) X & =A^{-1} B \quad \text { Associative Property } \\
I_{3} X & =A^{-1} B \quad \text { Property of Inverses } \\
X & =A^{-1} B
\end{aligned}
$$

Matrix Equations

- In Example 4, we showed that:

$$
A^{-1}=\left[\begin{array}{rrr}
-3 & 2 & 0 \\
-4 & 1 & -\frac{2}{3} \\
1 & 0 & \frac{1}{3}
\end{array}\right]
$$

Matrix Equations

- So, from $X=A^{-1} B$, we have:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{rrr}
-3 & 2 & 0 \\
-4 & 1 & -\frac{2}{3} \\
1 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
7 \\
5 \\
0
\end{array}\right]=\left[\begin{array}{r}
-11 \\
-23 \\
7
\end{array}\right]
$$

- Thus, $x=-11, y=-23, z=7$ is the solution of the original system.

Matrix Equations

- We have proved that the matrix equation

$$
A X=B
$$

can be solved by the following method.

Solving a Matrix Equation

- Let:
$-A$ be a square $n \times n$ matrix that has an inverse A^{-1}.
$-X$ be a variable matrix, with n rows.
$-B$ be a known matrix, with n rows.
- Then, the solution of the matrix equation

$$
A X=B
$$

is given by:

$$
X=A^{-1} B
$$

E.g. 6-Solving a System Using a Matrix Inverse

$$
\left\{\begin{array}{l}
2 x-5 y=15 \\
3 x-6 y=36
\end{array}\right.
$$

(a) Write the system of equations as a matrix equation.
(b) Solve the system by solving the matrix equation.

E.g. 6-Using a Matrix Inverse

Example (a)

- We write the system as a matrix equation of the form $A X=B$:

$$
\left[\begin{array}{ll}
2 & -5 \\
3 & -6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
15 \\
36
\end{array}\right]
$$

E.g. 6—Using a Matrix Inverse

Example (b)

- Using the rule for finding the inverse of a 2×2 matrix, we get:

$$
\begin{aligned}
A^{-1}=\left[\begin{array}{ll}
2 & -5 \\
3 & -6
\end{array}\right]^{-1} & =\frac{1}{2(-6)-(-5) 3}\left[\begin{array}{cc}
-6 & -(-5) \\
-3 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ll}
-6 & 5 \\
-3 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
-2 & \frac{5}{3} \\
-1 & \frac{2}{3}
\end{array}\right]
\end{aligned}
$$

E.g. 6—Using a Matrix Inverse

Example (b)

- Multiplying each side of the matrix equation by the inverse matrix, we get:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
-2 & \frac{5}{3} \\
-1 & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
15 \\
36
\end{array}\right]=\left[\begin{array}{c}
30 \\
9
\end{array}\right]
$$

- Thus, $x=30$ and $y=9$.
- Modeling with Matrix Equations

Applications

- Suppose we need to solve several systems of equations with the same coefficient matrix.
- Then, converting the systems to matrix equations provides an efficient way to obtain the solutions.
- We only need to find the inverse of the coefficient matrix once.

