

Faculty of Engineering Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120

: Instructor Dr. O. Philips Agboola

Determinants and Cramer's Rule

Determinants

• If a matrix is square (that is, if it has the same number of rows as columns), then we can assign to it a number called its determinant.

 Determinants can be used to solve systems of linear equations--as we will see later in the section.

 They are also useful in determining whether a matrix has an inverse.

• Determinant of a 2 x 2 Matrix

Determinant of 1 x 1 matrix

• We denote the determinant of a square matrix A by the symbol det(A) or | A |.

We first define det(A) for the simplest cases.
If A = [a] is a 1 x 1 matrix, then det(A) = a.

• The determinant of the 2 x 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is:

$$det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

E.g. 1—Determinant of a 2 x 2 Matrix • Evaluate |A| for $A = \begin{bmatrix} 6 & -3 \\ 2 & 3 \end{bmatrix}$

$$\begin{vmatrix} 6 & -3 \\ 2 & 3 \end{vmatrix} = 6 \cdot 3 - (-3)2 = 18 - (-6) = 24$$

 To define the concept of determinant for an arbitrary *n x n* matrix, we need the following terminology.

• Let A be an *n x n* matrix.

- The minor M_{ij} of the element a_{ij} is the determinant of the matrix obtained by deleting the *i*th row and *j*th column of A.
- The cofactor A_{ij} of the element a_{ij} is:

$$A_{ij} = (-1)^{i+j} M_{ij}$$

- For example, *A* is the matrix $\begin{bmatrix} 2 & 3 & -1 \\ 0 & 2 & 4 \\ -2 & 5 & 6 \end{bmatrix}$
 - The minor M_{12} is the determinant of the matrix obtained by deleting the first row and second column from A.

$$M_{12} = \begin{vmatrix} 2 & 3 & 1 \\ 0 & 2 & 4 \\ -2 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 0 & 4 \\ -2 & 6 \end{vmatrix} = 0(6) - 4(-2) = 8$$

- So, the cofactor
$$A_{12} = (-1)^{1+2}M_{12} = -8$$

• Similarly,

$$M_{33} = \begin{vmatrix} 2 & 3 & -1 \\ 0 & 2 & 4 \\ -2 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} = 2 \cdot 2 - 3 \cdot 0 = 4$$

$$-$$
 So, $A_{33} = (-1)^{3+3} M_{33} = 4$

- Note that the cofactor of a_{ij} is simply the minor of a_{ij} multiplied by either 1 or -1, depending on whether *i* + *j* is even or odd.
 - Thus, in a 3 x 3 matrix, we obtain the cofactor of any element by prefixing its minor with the sign obtained from the following checkerboard pattern. + - +

Determinant of a Square Matrix

 We are now ready to define the determinant of any square matrix.

Determinant of a Square Matrix

 If A is an n x n matrix, the determinant of A is obtained by multiplying each element of the first row by its cofactor, and then adding the results.

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n}$$

E.g. 2—Determinant of a 3 x 3 Matrix

• Evaluate the determinant of the matrix.

E.g. 2—Determinant of a 3 x 3 Matrix $det(A) = \begin{vmatrix} 2 & 3 & -1 \\ 0 & 2 & 4 \\ -2 & 5 & 6 \end{vmatrix}$ + - +- + -+ - + $=2\begin{vmatrix} 2 & 4 \\ 5 & 6 \end{vmatrix} - 3\begin{vmatrix} 0 & 4 \\ -2 & 6 \end{vmatrix} + (-1)\begin{vmatrix} 0 & 2 \\ -2 & 5 \end{vmatrix}$ $= 2(2 \cdot 6 - 4 \cdot 5) - 3[0 \cdot 6 - 4(-2)] - [0 \cdot 5 - 2(-2)]$ = -16 - 24 - 4= -44

Expanding the Determinant

- In our definition of the determinant, we used the cofactors of elements in the first row only.
 - This is called expanding the determinant by the first row.
 - In fact, we can expand the determinant by any row or column in the same way, and obtain the same result in each case.
 - We won't prove this, though.

E.g. 3—Expanding Determinant about Row and Column

• Let A be the matrix of Example 2.

Evaluate the determinant of A by expanding
(a) by the second row
(b) by the third column

 Verify that each expansion gives the same value. Example (a)

E.g. 3—Expanding about Row

• Expanding by the second row, we get:

E.g. 3—Expanding about Column

• Expanding by the third column, we get:

Example (b) $\begin{array}{c} \text{''} \\ \det(A) = \begin{vmatrix} 2 & 3 & -1 \\ 0 & 2 & 4 \\ -2 & 5 & 6 \end{vmatrix} \qquad \begin{array}{c} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$ $= -1 \begin{vmatrix} 0 & 2 \\ -2 & 5 \end{vmatrix} - 4 \begin{vmatrix} 2 & 3 \\ -2 & 5 \end{vmatrix} + 6 \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix}$ $= -[0 \cdot 5 - 2(-2)] - 4[2 \cdot 5 - 3(-2)]$ +6|2.2-3.0|= -4 - 64 + 24 = -44

E.g. 3—Expanding Determinant about Row and Column

• In both cases, we obtain the same value for the determinant as when we expanded by the first row in Example 2.

Inverse of Square Matrix

- The following criterion allows us to determine whether a square matrix has an inverse without actually calculating the inverse.
 - This is one of the most important uses of the determinant in matrix algebra.
 - It is reason for the name determinant.

Invertibility Criterion

• If A is a square matrix, then A has an inverse if and only if $det(A) \neq 0$.

– We will not prove this fact.

 However, from the formula for the inverse of a 2 x 2 matrix, you can see why it is true in the 2 x 2 case.

E.g. 4—Determinant to Show Matrix Is Not Invertible

- Show that the matrix Ahas no inverse. $A = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 3 \\ 5 & 6 & 2 & 6 \\ 2 & 4 & 0 & 9 \end{bmatrix}$
 - We begin by calculating the determinant of A.
 - Since all but one of the elements of the second row is zero, we expand the determinant by the second row.

E.g. 4—Determinant to Show Matrix Is Not Invertible

• If we do so, we see from this equation that only the cofactor A_{24} needs to be calculated.

Since the determinant of A is zero, A cannot have an inverse—by the Invertibility Criterion.

Row and Column Transformations

Row and Column Transformations

 The preceding example shows that, if we expand a determinant about a row or column that contains many zeros, our work is reduced considerably.

 We don't have to evaluate the cofactors of the elements that are zero.

Row and Column Transformations

 The following principle often simplifies the process of finding a determinant by introducing zeros into it without changing its value.

Row and Column Transformations of a Determinant

 If A is a square matrix, and if the matrix B is obtained from A by adding a multiple of one row to another, or a multiple of one column to another, then det(A) = det(B)

E.g. 5—Using Row and Column Transformations

• Find the determinant of the matrix A.

$$A = \begin{bmatrix} 8 & 2 & -1 & -4 \\ 3 & 5 & -3 & 11 \\ 24 & 6 & 1 & -12 \\ 2 & 2 & 7 & -1 \end{bmatrix}$$

- Does it have an inverse?

E.g. 5—Using Row and Column Transformations

If we add -3 times row 1 to row 3, we change all but one element of row 3 to zeros:
 8 2 -1 -4

$$\begin{bmatrix} 8 & 2 & -1 & -4 \\ 3 & 5 & -3 & 11 \\ 0 & 0 & 4 & 0 \\ 2 & 2 & 7 & -1 \end{bmatrix}$$

This new matrix has the same determinant as *A*.

E.g. 5—Using Row and Column Transformations

- If we expand its determinant by the third row, we get:
 - et: $|8 \quad 2 \quad -4|$ $det(A) = 4 \begin{vmatrix} 3 & 5 & 11 \\ 2 & 2 & -1 \end{vmatrix}$
 - Now, adding 2 times column 3 to column 1 in this determinant gives us the following result.

E.g. 5—Using Row and Column Transformations $det(A) = 4 \begin{vmatrix} 0 & 2 & -4 \\ 25 & 5 & 11 \\ 0 & 2 & -1 \end{vmatrix} = 4(-25) \begin{vmatrix} 2 & -4 \\ 2 & -1 \end{vmatrix}$ = 4(-25)[2(-1)-(-4)2]= -600

Since the determinant of A is not zero,
 A does have an inverse.