Faculty of Engineering Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120

: Instructor
Dr. O. Philips Agboola

- Determinants and Cramer's Rule

Determinants

- If a matrix is square (that is, if it has the same number of rows as columns), then we can assign to it a number called its determinant.
- Determinants can be used to solve systems of linear equations--as we will see later in the section.
- They are also useful in determining whether a matrix has an inverse.
- Determinant of a 2×2 Matrix

Determinant of 1×1 matrix

- We denote the determinant of a square matrix A by the symbol $\operatorname{det}(A)$ or $|A|$.
- We first define $\operatorname{det}(A)$ for the simplest cases.
- If $A=[a]$ is a 1×1 matrix, then $\operatorname{det}(A)=a$.

Determinant of a 2×2 Matrix

- The determinant of the 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is:

$$
\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

E.g. 1-Determinant of a 2×2 Matrix

- Evaluate $|A|$ for $A=\left[\begin{array}{cc}6 & -3 \\ 2 & 3\end{array}\right]$

$$
\left|\begin{array}{ll}
6 & X_{3}^{-3} \\
2
\end{array}\right|=6 \cdot 3-(-3) 2=18-(-6)=24
$$

- Determinant of an $n \times n$ Matrix

Determinant of an $\mathrm{n} \times \mathrm{n}$ Matrix

- To define the concept of determinant for an arbitrary $n \times n$ matrix, we need the following terminology.

Determinant of an $\mathrm{n} \times \mathrm{n}$ Matrix

Let A be an $n x n$ matrix.

- The minor $M_{i j}$ of the element $a_{i j}$ is the determinant of the matrix obtained by deleting the i th row and j th column of A.
- The cofactor $A_{i j}$ of the element $a_{i j}$ is:

$$
A_{i j}=(-1)^{i+j} M_{i j}
$$

Determinant of an $\mathrm{n} \times \mathrm{n}$ Matrix

- For example, A is the matrix $\left[\begin{array}{ccc}2 & 3 & -1 \\ 0 & 2 & 4 \\ -2 & 5 & 6\end{array}\right]$
- The minor M_{12} is the determinant of the matrix obtained by deleting the first row and second column from A.

$$
M_{12}=\left|\begin{array}{ccc}
2 & 2 & 1 \\
0 & 2 & 4 \\
-2 & 5 & 6
\end{array}\right|=\left|\begin{array}{cc}
0 & 4 \\
-2 & 6
\end{array}\right|=0(6)-4(-2)=8
$$

- So, the cofactor $A_{12}=(-1)^{1+2} M_{12}=-8$

Determinant of an $\mathrm{n} \times \mathrm{n}$ Matrix

- Similarly,

$$
-M_{33}=\left|\begin{array}{ccc}
2 & 3 & -1 \\
0 & 2 & 4 \\
-2 & 5 & 6
\end{array}\right|=\left|\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right|=2 \cdot 2-3 \cdot 0=4
$$

$$
- \text { So, } A_{33}=(-1)^{3+3} M_{33}=4
$$

Determinant of an $\mathrm{n} \times \mathrm{n}$ Matrix

- Note that the cofactor of $a_{i j}$ is simply the minor of $a_{i j}$ multiplied by either 1 or -1 , depending on whether $i+j$ is even or odd.
- Thus, in a 3×3 matrix, we obtain the cofactor of any element by prefixing its minor with the sign obtained from the following checkerboard pattern.

$$
\left[\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

Determinant of a Square Matrix

- We are now ready to define the determinant of any square matrix.

Determinant of a Square Matrix

- If A is an $n \times n$ matrix, the determinant of A is obtained by multiplying each element of the first row by its cofactor, and then adding the results.

$$
\begin{aligned}
\operatorname{results.} \\
\begin{aligned}
\operatorname{det}(A)=|A| & =\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right| \\
& =a_{11} A_{11}+a_{12} A_{12}+\ldots+a_{1 n} A_{1 n}
\end{aligned}
\end{aligned}
$$

E.g. 2-Determinant of a 3×3 Matrix

- Evaluate the determinant of the matrix.

$$
A=\left[\begin{array}{rrr}
2 & 3 & -1 \\
0 & 2 & 4 \\
-2 & 5 & 6
\end{array}\right]
$$

E.g. 2-Determinant of a 3×3 Matrix

 - $\operatorname{det}(A)$$$
=\left|\begin{array}{ccc}
2 & 3 & -1 \\
0 & 2 & 4 \\
-2 & 5 & 6
\end{array}\right|
$$

$$
\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

$$
=2\left|\begin{array}{ll}
2 & 4 \\
5 & 6
\end{array}\right|-3\left|\begin{array}{cc}
0 & 4 \\
-2 & 6
\end{array}\right|+(-1)\left|\begin{array}{cc}
0 & 2 \\
-2 & 5
\end{array}\right|
$$

$$
=2(2 \cdot 6-4 \cdot 5)-3[0 \cdot 6-4(-2)]-[0 \cdot 5-2(-2)]
$$

$$
=-16-24-4
$$

$$
=-44
$$

Expanding the Determinant

- In our definition of the determinant, we used the cofactors of elements in the first row only.
- This is called expanding the determinant by the first row.
- In fact, we can expand the determinant by any row or column in the same way, and obtain the same result in each case.
- We won't prove this, though.

E.g. 3-Expanding Determinant about Row and Column

- Let A be the matrix of Example 2.
- Evaluate the determinant of A by expanding
(a) by the second row
(b) by the third column
- Verify that each expansion gives the same value.

Example (a)

E.g. 3-Expanding about Row

- Expanding by the second row, we get:

$$
\left.\begin{array}{rl}
\operatorname{det}(A) & =\left|\begin{array}{ccc}
2 & 3 & -1 \\
0 & 2 & -4 \\
-2 & 5 & 6
\end{array}\right| \\
& \left.=-0\left|\begin{array}{cc}
3 & -1 \\
5 & 6
\end{array}\right|+2 \left\lvert\, \begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right.\right] \\
-2 & 6
\end{array}|-4| \begin{array}{cc}
2 & 3 \\
-2 & 5
\end{array} \right\rvert\,
$$

E.g. 3-Expanding about Column

- Expanding by the third column, we get:

Example (b)

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{ccc}
2 & 3 & -1 \\
0 & 2 & 4 \\
-2 & 5 & 6
\end{array}\right| \\
& \left.=-1\left|\begin{array}{cc}
0 & 2 \\
-2 & 5
\end{array}\right|-4 \left\lvert\, \begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right.\right]+6\left|\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right| \\
& =-[0 \cdot 5-2(-2)]-4[2 \cdot 5-3(-2)] \\
& +6[2.2-3 \cdot 0] \\
& -4-64+24=-44
\end{aligned}
$$

E.g. 3-Expanding Determinant about Row and Column

- In both cases, we obtain the same value for the determinant as when we expanded by the first row in Example 2.

Inverse of Square Matrix

- The following criterion allows us to determine whether a square matrix has an inverse without actually calculating the inverse.
- This is one of the most important uses of the determinant in matrix algebra.
- It is reason for the name determinant.

Invertibility Criterion

- If A is a square matrix, then A has an inverse if and only if $\operatorname{det}(A) \neq 0$.
- We will not prove this fact.
- However, from the formula for the inverse of a 2×2 matrix, you can see why it is true in the 2×2 case.
E.g. 4—Determinant to Show Matrix Is Not Invertible
- Show that the matrix A has no inverse.

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 4 \\
0 & 0 & 0 & 3 \\
5 & 6 & 2 & 6 \\
2 & 4 & 0 & 9
\end{array}\right]
$$

- We begin by calculating the determinant of A.
- Since all but one of the elements of the second row is zero, we expand the determinant by the second row.

E.g. 4—Determinant to Show Matrix

 Is Not Invertible- If we do so, we see from this equation that only the cofactor A_{24} needs to be calculated. $\operatorname{det}(A)$
$=\left|\begin{array}{llll}1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 3 \\ 5 & 6 & 2 & 6 \\ 2 & 4 & 0 & 9\end{array}\right| \quad\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$
$=-0 \cdot A_{21}+0 \cdot A_{22}-0 \cdot A_{23}+3 \cdot A_{24}$
$=3 A_{24}$
E.g. 4—Determinant to Show Matrix $\left.\begin{array}{ll}1 & 2\end{array} 0 \right\rvert\,$ Is Not Invertible

$$
=3\left|\begin{array}{lll}
5 & 6 & 2 \\
2 & 4 & 0
\end{array}\right|
$$

$$
\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

$=3(-2)(1 \cdot 4-2 \cdot 2)$
$=0$

- Since the determinant of A is zero, A cannot have an inverse-by the Invertibility Criterion.
- Row and Column Transformations

Row and Column Transformations

- The preceding example shows that, if we expand a determinant about a row or column that contains many zeros, our work is reduced considerably.
- We don't have to evaluate the cofactors of the elements that are zero.

Row and Column Transformations

- The following principle often simplifies the process of finding a determinant by introducing zeros into it without changing its value.

Row and Column Transformations of a Determinant

- If A is a square matrix, and if the matrix B is obtained from A by adding a multiple of one row to another, or a multiple of one column to another, then

$$
\operatorname{det}(A)=\operatorname{det}(B)
$$

E.g. 5—Using Row and Column Transformations

- Find the determinant of the matrix A.

$$
A=\left[\begin{array}{rrrr}
8 & 2 & -1 & -4 \\
3 & 5 & -3 & 11 \\
24 & 6 & 1 & -12 \\
2 & 2 & 7 & -1
\end{array}\right]
$$

- Does it have an inverse?

E.g. 5-Using Row and Column Transformations

- If we add -3 times row 1 to row 3, we change all but one element of row 3 to zeros:

$$
\left[\begin{array}{rrrr}
8 & 2 & -1 & -4 \\
3 & 5 & -3 & 11 \\
0 & 0 & 4 & 0 \\
2 & 2 & 7 & -1
\end{array}\right]
$$

- This new matrix has the same determinant as A.

E.g. 5—Using Row and Column Transformations

- If we expand its determinant by the third row, we get:

$$
\operatorname{det}(A)=4\left|\begin{array}{ccc}
8 & 2 & -4 \\
3 & 5 & 11 \\
2 & 2 & -1
\end{array}\right|
$$

- Now, adding 2 times column 3
to column 1 in this determinant gives us the following result.

E.g. 5-Using Row and Column Transformations

$$
\begin{aligned}
\operatorname{det}(A)=4\left|\begin{array}{ccc}
0 & 2 & -4 \\
25 & 5 & 11 \\
0 & 2 & -1
\end{array}\right| & =4(-25)\left|\begin{array}{ll}
2 & -4 \\
2 & -1
\end{array}\right| \\
& =4(-25)[2(-1)-(-4) 2] \\
& =-600
\end{aligned}
$$

- Since the determinant of A is not zero, A does have an inverse.

