Faculty of Engineering

Mechanical Engineering Department
Linear Algebra and Vector Analysis MATH 1120 Lecture 13

Elementary Linear Algebra

Chapter 3

Howard Anton
Copyright © 2010 by John Wiley \& Sons, Inc. All rights reserved.

Properties of Vectors

THEOREM 3.1.1 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{n}, and if k and m are scalars, then:
(a) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(b) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(c) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(d) $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
(e) $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
(f) $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
(g) $k(m \mathbf{u})=(k m) \mathbf{u}$
(h) $\quad 1 \mathbf{u}=\mathbf{u}$

Vectors Whose Initial Point Is Not at the Origin

$$
\mathrm{v}={\overrightarrow{P_{1} P}}_{2}=\overrightarrow{O P}_{2}-\overrightarrow{O P}_{1}
$$

- we need to discuss briefly how to generate a vector given the initial and final points of the representation. Given the two points

$$
A=\left(a_{1}, a_{2}, a_{3}\right) \text { and } B=\left(b_{1}, b_{2}, b_{3}\right)
$$

$\overrightarrow{A B}$ is,

$$
\vec{v}=\left\langle b_{1}-a_{1}, b_{2}-a_{2}, b_{3}-a_{3}\right\rangle
$$

Example 1 Give the vector for each of the following.

(a) The vector from $(2,-7,0)$ to $(1,-3,-5)$.
(b) The vector from $(1,-3,-5)$ to $(2,-7,0)$.
(c) The position vector for $(-90,4)$

Solution

(a) Remember that to construct this vector we subtract coordinates of the starting point from the ending point.

$$
\langle 1-2,-3-(-7),-5-0\rangle=\langle-1,4,-5\rangle
$$

(b) Same thing here.

$$
\langle 2-1,-7-(-3), 0-(-5)\rangle=\langle 1,-4,5\rangle
$$

find the components of the vector $\overrightarrow{P_{1} P_{2}}$.
(a) $P_{1}(3,5), \quad P_{2}(2,8)$
(b) $P_{1}(5,-2,1), \quad P_{2}(2,4,2)$

Answer:
(a) $\overrightarrow{P_{1} P_{2}}=(-1,3)$
(b) $\overrightarrow{P_{1} P_{2}}=(-3,6,1)$

Section 3.2 Norm, Dot Product, and Distance in R^{n}

The norm of v, the length of v, or the magnitude of v (the term "norm" being a common mathematical synonym for length)

(a)

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

(b)

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

Section 3.2 Norm, Dot Product, and Distance in R^{n}

Norm:

DEFINITION 1 If $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a vector in R^{n}, then the $\boldsymbol{n o r m}$ of \mathbf{v} (also called the length of \mathbf{v} or the magnitude of \mathbf{v}) is denoted by $\|\mathbf{v}\|$, and is defined by the formula

$$
\begin{equation*}
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+\cdots+v_{n}^{2}} \tag{3}
\end{equation*}
$$

Unit Vectors:

$$
\mathbf{u}=\frac{1}{\|\mathbf{v}\|} \mathbf{v}
$$

Example:

If $\mathbf{v}=(1,-3,2)$ and $\mathbf{w}=(4,2,1)$, then

$$
\begin{array}{ll}
\mathbf{v}+\mathbf{w}=(5,-1,3), & 2 \mathbf{v}=(2,-6,4) \\
-\mathbf{w}=(-4,-2,-1), & \mathbf{v}-\mathbf{w}=\mathbf{v}+(-\mathbf{w})=(-3,-5,1)
\end{array}
$$

Example 2 Determine the magnitude of each of the following vectors.
(a) $\vec{a}=\langle 3,-5,10\rangle$
(b) $\vec{u}=\left\langle\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle$
(c) $\vec{w}=\langle 0,0\rangle$
(d) $\vec{i}=\langle 1,0,0\rangle$

Solution

There isn't too much to these other than plug into the formula.
(a) $\|\vec{a}\|=\sqrt{9+25+100}=\sqrt{134}$
(c) $\|\vec{w}\|=\sqrt{0+0}=0$
(b) $\|\vec{u}\|=\sqrt{\frac{1}{5}+\frac{4}{5}}=\sqrt{1}=1$
(d) $\|\vec{i}\|=\sqrt{1+0+0}=1$

The Standard Unit Vectors

(b)
vectors are denoted by

$$
\mathbf{i}=(1,0) \text { and } \mathbf{j}=(0,1)
$$

and in R^{3} by

$$
\mathbf{i}=(1,0,0), \quad \mathbf{j}=(0,1,0), \quad \text { and } \quad \mathbf{k}=(0,0,1)
$$

Example 1 For the vector $\vec{a}=\langle 2,4\rangle$ compute $3 \vec{a}, \frac{1}{2} \vec{a}$ and $-2 \vec{a}$. Graph all four vectors on the same axis system.

Solution

Here are the three scalar multiplications.

$$
3 \vec{a}=\langle 6,12\rangle \quad \frac{1}{2} \vec{a}=\langle 1,2\rangle \quad-2 \vec{a}=\langle-4,-8\rangle
$$

Example 2 Determine if the sets of vectors are parallel or not.
(a) $\vec{a}=\langle 2,-4,1\rangle, \vec{b}=\langle-6,12,-3\rangle$
(b) $\vec{a}=\langle 4,10\rangle, \vec{b}=\langle 2,-9\rangle$

Solution

(a) These two vectors are parallel since $\vec{b}=-3 \vec{a}$
(b) These two vectors aren't parallel. This can be seen by noticing that $4\left(\frac{1}{2}\right)=2$ and yet $10\left(\frac{1}{2}\right)=5 \neq-9$. In other words we can't make \vec{a} be a scalar multiple of \vec{b}.

Example 3 Find a unit vector that points in the same direction as $\vec{w}=\langle-5,2,1\rangle$.

Here's what we'll do. First let's determine the magnitude of \vec{w}.

$$
\|\vec{w}\|=\sqrt{25+4+1}=\sqrt{30}
$$

Now, let's form the following new vector,

$$
\vec{u}=\frac{1}{\|\vec{w}\|} \vec{w}=\frac{1}{\sqrt{30}}\langle-5,2,1\rangle=\left\langle-\frac{5}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}}\right\rangle
$$

The claim is that this is a unit vector. That's easy enough to check

$$
\|\vec{u}\|=\sqrt{\frac{25}{30}+\frac{4}{30}+\frac{1}{30}}=\sqrt{\frac{30}{30}}=1
$$

