Faculty of Engineering

Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120 Lecture 15

Elementary Linear Algebra

Chapter 3

Howard Anton
Copyright © 2010 by John Wiley \& Sons, Inc. All rights reserved.

Algebraic Properties of the Dot Product

In the special case where $\mathbf{u}=\mathbf{v}$ in Definition 4, we obtain the relationship

$$
\begin{equation*}
\mathbf{v} \cdot \mathbf{v}=v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}=\|\mathbf{v}\|^{2} \tag{18}
\end{equation*}
$$

This yields the following formula for expressing the length of a vector in terms of a dot product:

$$
\begin{equation*}
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}} \tag{19}
\end{equation*}
$$

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{n}, and if k is a scalar, then:
(a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(b) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
[Symmetry property]
(c) $k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}$
[Distributive property]
(d) $\mathbf{v} \cdot \mathbf{v} \geq 0$ and $\mathbf{v} \cdot \mathbf{v}=0$ if and only if $\mathbf{v}=\mathbf{0}$
[Homogeneity property]
[Positivity property]

THEOREM 3.2.3 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{n}, and if k is a scalar, then:
(a) $\mathbf{0} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{0}=\mathbf{0}$
(b) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
(c) $\mathbf{u} \cdot(\mathbf{v}-\mathbf{w})=\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{w}$
(d) $(\mathbf{u}-\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}-\mathbf{v} \cdot \mathbf{w}$
(e) $k(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(k \mathbf{v})$

Cauchy-Schwarz Inequality and Angles in R^{n}

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)
$$

$$
-1 \leq \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|} \leq 1
$$

THEOREM 3.2.4 Cauchy-Schwarz Inequality

If $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are vectors in R^{n}, then

$$
\begin{equation*}
|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\| \tag{22}
\end{equation*}
$$

or in terms of components

$$
\begin{equation*}
\left|u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}\right| \leq\left(u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}\right)^{1 / 2}\left(v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}\right)^{1 / 2} \tag{23}
\end{equation*}
$$

Geometry in R^{n}
THEOREM 3.2.5 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{n}, then:
(a) $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\| \quad$ [Triangle inequality for vectors]
(b) $d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w})+d(\mathbf{w}, \mathbf{v}) \quad$ [Triangle inequality for distances]

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

THEOREM 3.2.6 Parallelogram Equation for Vectors

If \mathbf{u} and \mathbf{v} are vectors in R^{n}, then

$$
\begin{equation*}
\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\left(\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}\right) \tag{24}
\end{equation*}
$$

THEOREM 3.2.7 If \mathbf{u} and \mathbf{v} are vectors in R^{n} with the Euclidean inner product, then

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=\frac{1}{4}\|\mathbf{u}+\mathbf{v}\|^{2}-\frac{1}{4}\|\mathbf{u}-\mathbf{v}\|^{2} \tag{25}
\end{equation*}
$$

Proof

$$
\begin{aligned}
& \|\mathbf{u}+\mathbf{v}\|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=\|\mathbf{u}\|^{2}+2(\mathbf{u} \cdot \mathbf{v})+\|\mathbf{v}\|^{2} \\
& \|\mathbf{u}-\mathbf{v}\|^{2}=(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})=\|\mathbf{u}\|^{2}-2(\mathbf{u} \cdot \mathbf{v})+\|\mathbf{v}\|^{2}
\end{aligned}
$$

Dot Products as Matrix Multiplication

| Dot Product | |
| :--- | :--- | :--- | :--- | :--- | :--- |

u a row matrix and \mathbf{v} a row matrix	$\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \mathbf{v}^{T}=\mathbf{v} \mathbf{u}^{T}$	$\begin{aligned} & \mathbf{u}=\left[\begin{array}{lll} 1 & -3 & 5 \end{array}\right] \\ & \mathbf{v}=\left[\begin{array}{lll} 5 & 4 & 0 \end{array}\right] \end{aligned}$	$\begin{aligned} & \mathbf{u v}^{T}=\left[\begin{array}{lll} 1 & -3 & 5 \end{array}\right]\left[\begin{array}{l} 5 \\ 4 \\ 0 \end{array}\right]=-7 \\ & \mathbf{v u}^{T}=\left[\begin{array}{lll} 5 & 4 & 0 \end{array}\right]\left[\begin{array}{r} 1 \\ -3 \\ 5 \end{array}\right]=-7 \end{aligned}$

EXAMPLE 1

Suppose that

$$
A=\left[\begin{array}{rrr}
1 & -2 & 3 \\
2 & 4 & 1 \\
-1 & 0 & 1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
-1 \\
2 \\
4
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
-2 \\
0 \\
5
\end{array}\right]
$$

Verifying that $A u \cdot v=u \cdot A^{T} \mathbf{v}$
Then

$$
\begin{aligned}
A \mathbf{u} & =\left[\begin{array}{rrr}
1 & -2 & 3 \\
2 & 4 & 1 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{r}
7 \\
10 \\
5
\end{array}\right] \\
A^{T} \mathbf{v} & =\left[\begin{array}{rrr}
1 & 2 & -1 \\
-2 & 4 & 0 \\
3 & 1 & 1
\end{array}\right]\left[\begin{array}{r}
-2 \\
0 \\
5
\end{array}\right]=\left[\begin{array}{r}
-7 \\
4 \\
-1
\end{array}\right]
\end{aligned}
$$

from which we obtain

$$
\begin{aligned}
A \mathbf{u} \cdot \mathbf{v} & =7(-2)+10(0)+5(5)=11 \\
\mathbf{u} \cdot A^{T} \mathbf{v} & =(-1)(-7)+2(4)+4(-1)=11
\end{aligned}
$$

