

Faculty of Engineering Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120 Lecture 15

Elementary Linear Algebra

Chapter 3

Howard Anton Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved.

Algebraic Properties of the Dot Product

In the special case where $\mathbf{u} = \mathbf{v}$ in Definition 4, we obtain the relationship

$$\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 + \dots + v_n^2 = \|\mathbf{v}\|^2$$
(18)

This yields the following formula for expressing the length of a vector in terms of a dot product:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} \tag{19}$$

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:				
<i>(a)</i>	$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$	[Symmetry property]		
<i>(b)</i>	$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$	[Distributive property]		
(c)	$k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$	[Homogeneity property]		
(d)	$\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = 0$	[Positivity property]		

THEOREM 3.2.3 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

- (a) $\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = \mathbf{0}$
- (b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- (c) $\mathbf{u} \cdot (\mathbf{v} \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \mathbf{u} \cdot \mathbf{w}$
- (d) $(\mathbf{u} \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} \mathbf{v} \cdot \mathbf{w}$
- (e) $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$

Cauchy–Schwarz Inequality and Angles in Rⁿ

$$\theta = \cos^{-1} \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \right)$$

$$-1 \le \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$$

THEOREM 3.2.4 Cauchy–Schwarz Inequality

If
$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
 and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then
 $|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \|\mathbf{v}\|$ (22)

or in terms of components

$$|u_1v_1 + u_2v_2 + \dots + u_nv_n| \le (u_1^2 + u_2^2 + \dots + u_n^2)^{1/2}(v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$
(23)

Geometry in Rⁿ

THEOREM 3.2.5 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , then: (a) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ [Triangle inequality for vectors] (b) $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$ [Triangle inequality for distances]

THEOREM 3.2.6 Parallelogram Equation for Vectors

If **u** and **v** are vectors in \mathbb{R}^n , then

$$\|\mathbf{u} + \mathbf{v}\|^{2} + \|\mathbf{u} - \mathbf{v}\|^{2} = 2\left(\|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2}\right)$$
(24)

THEOREM 3.2.7 If **u** and **v** are vectors in \mathbb{R}^n with the Euclidean inner product, then

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} \|\mathbf{u} + \mathbf{v}\|^2 - \frac{1}{4} \|\mathbf{u} - \mathbf{v}\|^2$$
(25)

Proof

$$\|\mathbf{u} + \mathbf{v}\|^{2} = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \|\mathbf{u}\|^{2} + 2(\mathbf{u} \cdot \mathbf{v}) + \|\mathbf{v}\|^{2}$$
$$\|\mathbf{u} - \mathbf{v}\|^{2} = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \|\mathbf{u}\|^{2} - 2(\mathbf{u} \cdot \mathbf{v}) + \|\mathbf{v}\|^{2}$$

Form	Dot Product		Example
u a column matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$	$\mathbf{u} = \begin{bmatrix} 1\\ -3\\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5\\ 4\\ 0 \end{bmatrix}$	$\mathbf{u}^{T}\mathbf{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5\\4\\0 \end{bmatrix} = -7$ $\mathbf{v}^{T}\mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1\\-3\\5 \end{bmatrix} = -7$
	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}\mathbf{v} = \mathbf{v}^T \mathbf{u}^T$	u = [1 -3 5]	$\begin{bmatrix} 5 \\ 4 \end{bmatrix} = -7$
u a row matrix and v a column matrix		$\mathbf{v} = \begin{bmatrix} 5\\4\\0 \end{bmatrix}$	$\mathbf{v}^T \mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$
u a column matrix and v a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{v}\mathbf{u} = \mathbf{u}^T \mathbf{v}^T$	$\mathbf{u} = \begin{bmatrix} 1\\ -3\\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix}$	$\mathbf{v}\mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$ $\mathbf{u}^T \mathbf{v}^T = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$

Dot Products as Matrix Multiplication

u a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}\mathbf{v}^T = \mathbf{v}\mathbf{u}^T$	$\mathbf{u} = [1 -3 5]$	$\mathbf{u}\mathbf{v}^T = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
matrix		$v = [5 \ 4 \ 0]$	$\mathbf{v}\mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$

EXAMPLE 1

Suppose that

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$$

Verifying that $Au \cdot v = u \cdot A^T v$

Then

$$A\mathbf{u} = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \\ 5 \end{bmatrix}$$
$$A^{T}\mathbf{v} = \begin{bmatrix} 1 & 2 & -1 \\ -2 & 4 & 0 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ -1 \end{bmatrix}$$

from which we obtain

$$A\mathbf{u} \cdot \mathbf{v} = 7(-2) + 10(0) + 5(5) = 11$$

 $\mathbf{u} \cdot A^T \mathbf{v} = (-1)(-7) + 2(4) + 4(-1) = 11$