Faculty of Engineering

Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120 Lecture 16

Elementary Linear Algebra

Chapter 3

Howard Anton
Copyright © 2010 by John Wiley \& Sons, Inc. All rights reserved.

Projections

Vector projections

Scalar projection

Scalar projection of \mathbf{b} onto $\mathbf{a}: \quad \operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$
Vector projection of \mathbf{b} onto $\mathbf{a}: \quad \operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}$

V EXAMPLE 6 Find the scalar projection and vector projection of $\mathbf{b}=\langle 1,1,2\rangle$ onto $\mathbf{a}=\langle-2,3,1\rangle$.

SOLUTION Since $|\mathbf{a}|=\sqrt{(-2)^{2}+3^{2}+1^{2}}=\sqrt{14}$, the scalar projection of \mathbf{b} onto \mathbf{a} is

$$
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}=\frac{(-2)(1)+3(1)+1(2)}{\sqrt{14}}=\frac{3}{\sqrt{14}}
$$

The vector projection is this scalar projection times the unit vector in the direction of a:

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\frac{3}{\sqrt{14}} \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{3}{14} \mathbf{a}=\left\langle-\frac{3}{7}, \frac{9}{14}, \frac{3}{14}\right\rangle
$$

EXAMPLE A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 70 N . The handle of the wagon is held at an angle of 35° above the horizontal. Find the work done by the force.

SOLUTION If F and \mathbf{D} are the force and displacement vectors, as pictured in Figure 7, then the work done is

$$
\begin{aligned}
W & =\mathbf{F} \cdot \mathbf{D}=|\mathbf{F}||\mathbf{D}| \cos 35^{\circ} \\
& =(70)(100) \cos 35^{\circ} \approx 5734 \mathrm{~N} \cdot \mathrm{~m}=5734 \mathrm{~J}
\end{aligned}
$$

EXAMPLE A force is given by a vector $\mathbf{F}=3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$ and moves a particle from the point $P(2,1,0)$ to the point $Q(4,6,2)$. Find the work done.

SOLUTION The displacement vector is $\mathbf{D}=\overrightarrow{P Q}=\langle 2,5,2\rangle$, so by Equation 12, the work done is

$$
\begin{aligned}
W & =\mathbf{F} \cdot \mathbf{D}=\langle 3,4,5\rangle \cdot\langle 2,5,2\rangle \\
& =6+20+10=36
\end{aligned}
$$

If the unit of length is meters and the magnitude of the force is measured in newtons, then the work done is 36 J .

The Cross Product

- Given two nonzero vectors $\mathfrak{a}(a 1, a 2, a 3)$ and $\underline{\boldsymbol{b}}$ ($b 1, b 2, b 3$), it is very useful to be able to find a nonzero vector \underline{c} that is perpendicular to both and

4 Definition If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

A determinant of order 2 is defined by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

For example, $\quad\left|\begin{array}{rr}2 & 1 \\ -6 & 4\end{array}\right|=2(4)-1(-6)=14$
A determinant of order 3 can be defined in terms of second-order determinants as follows:

$$
5\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

If we now rewrite Definition 4 using second-order determinants and the standard basis vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}, we see that the cross product of the vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ is

$$
6 \quad \mathbf{a} \times \mathbf{b}=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}
$$

In view of the similarity between Equations 5 and 6, we often write
\square

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

EXAMPLE 1 If $\mathbf{a}=\langle 1,3,4\rangle$ and $\mathbf{b}=\langle 2,7,-5\rangle$, then

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 3 & 4 \\
2 & 7 & -5
\end{array}\right| \\
& =\left|\begin{array}{rr}
3 & 4 \\
7 & -5
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
1 & 4 \\
2 & -5
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right| \mathbf{k} \\
& =(-15-28) \mathbf{i}-(-5-8) \mathbf{j}+(7-6) \mathbf{k}=-43 \mathbf{i}+13 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

V EXAMPLE2 Show that $\mathbf{a} \times \mathbf{a}=\mathbf{0}$ for any vector \mathbf{a} in V_{3}.

SOLUTION If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, then

$$
\begin{aligned}
\mathbf{a} \times \mathbf{a} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right| \\
& =\left(a_{2} a_{3}-a_{3} a_{2}\right) \mathbf{i}-\left(a_{1} a_{3}-a_{3} a_{1}\right) \mathbf{j}+\left(a_{1} a_{2}-a_{2} a_{1}\right) \mathbf{k} \\
& =0 \mathbf{i}-0 \mathbf{i}+0 \mathbf{k}=\mathbf{0}
\end{aligned}
$$

PROOF In order to show that $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a}, we compute their dot product as follows:

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} & =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| a_{1}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| a_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| a_{3} \\
& =a_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)-a_{2}\left(a_{1} b_{3}-a_{3} b_{1}\right)+a_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right) \\
& =a_{1} a_{2} b_{3}-a_{1} b_{2} a_{3}-a_{1} a_{2} b_{3}+b_{1} a_{2} a_{3}+a_{1} b_{2} a_{3}-b_{1} a_{2} a_{3} \\
& =0
\end{aligned}
$$

A similar computation shows that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}=0$. Therefore $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.

9 Theorem If θ is the angle between \mathbf{a} and \mathbf{b} (so $0 \leqslant \theta \leqslant \pi$), then

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

10 Corollary Two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if

$$
\mathbf{a} \times \mathbf{b}=\mathbf{0}
$$

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

EXAMPLE 3 Find a vector perpendicular to the plane that passes through the points $P(1,4,6), Q(-2,5,-1)$, and $R(1,-1,1)$.
solution The vector $P Q \times P R$ is perpendicular to both $P Q$ and $P R$ and is therefore perpendicular to the plane through P, Q, and R. We know from (12.2.1) that

$$
\begin{aligned}
& \overrightarrow{P Q}=(-2-1) \mathbf{i}+(5-4) \mathbf{j}+(-1-6) \mathbf{k}=-3 \mathbf{i}+\mathbf{j}-7 \mathbf{k} \\
& \overrightarrow{P R}=(1-1) \mathbf{i}+(-1-4) \mathbf{j}+(1-6) \mathbf{k}=-5 \mathbf{j}-5 \mathbf{k}
\end{aligned}
$$

We compute the cross product of these vectors:

$$
\begin{aligned}
\overrightarrow{P Q} \times \overrightarrow{P R} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 1 & -7 \\
0 & -5 & -5
\end{array}\right| \\
& =(-5-35) \mathbf{i}-(15-0) \mathbf{j}+(15-0) \mathbf{k}=-40 \mathbf{i}-15 \mathbf{j}+15 \mathbf{k}
\end{aligned}
$$

So the vector $\langle-40,-15,15\rangle$ is perpendicular to the given plane. Any nonzero scalar multiple of this vector, such as $\langle-8,-3,3\rangle$, is also perpendicular to the plane.

EXAMPLE 4 Find the area of the triangle with vertices $P(1,4,6), Q(-2,5,-1)$, and $R(1,-1,1)$.

SOLUTION In Example 3 we computed that $\overrightarrow{P Q} \times \overrightarrow{P R}=\langle-40,-15,15\rangle$. The area of the parallelogram with adjacent sides $P Q$ and $P R$ is the length of this cross product:

$$
|\overrightarrow{P Q} \times \overrightarrow{P R}|=\sqrt{(-40)^{2}+(-15)^{2}+15^{2}}=5 \sqrt{82}
$$

The area A of the triangle $P Q R$ is half the area of this parallelogram, that is, $\frac{5}{2} \sqrt{82}$.

