Faculty of Engineering

Mechanical Engineering Department
Linear Algebra and Vector Analysis MATH 1120 Lecture 17

Elementary Linear Algebra

Chapter 3

Howard Anton
Copyright © 2010 by John Wiley \& Sons, Inc. All rights reserved.

Cross Product

DEFINITION 1 If $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ are vectors in 3 -space, then the cross product $\mathbf{u} \times \mathbf{v}$ is the vector defined by

$$
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
$$

or, in determinant notation,

$$
\mathbf{u} \times \mathbf{v}=\left(\left|\begin{array}{cc}
u_{2} & u_{3} \tag{1}\\
v_{2} & v_{3}
\end{array}\right|,-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|,\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|\right)
$$

- EXAMPLE 1 Calculating a Cross Product

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u}=(1,2,-2)$ and $\mathbf{v}=(3,0,1)$.
Solution From either (1) or the mnemonic in the preceding remark, we have

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left(\left|\begin{array}{rr}
2 & -2 \\
0 & 1
\end{array}\right|,-\left|\begin{array}{rr}
1 & -2 \\
3 & 1
\end{array}\right|,\left|\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right|\right) \\
& =(2,-7,-6)
\end{aligned}
$$

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in 3-space, then
(a) $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})=0$
$\mid \mathrm{u} \times \mathrm{v}$ is orthogonal to $\mathrm{u} \mid$
(b) $\mathbf{v} \cdot(\mathbf{u} \times \mathbf{v})=0 \quad \mid \mathbf{u} \times \mathbf{v}$ is orthogonal to $\mathbf{v} \mid$
(c) $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2} \quad \mid$ Lagrange's identity \mid
(d) $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \quad \mid$ vector triple product \mid
(e) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u} \quad \mid$ vector triple product \mid

- EXAMPLE $2 \mathbf{u} \times \mathbf{v}$ Is Perpendicular to \mathbf{u} and to \mathbf{v}

Consider the vectors

$$
\mathbf{u}=(1,2,-2) \text { and } \mathbf{v}=(3,0,1)
$$

In Example 1 we showed that

$$
\mathbf{u} \times \mathbf{v}=(2,-7,-6)
$$

Since

$$
\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})=(1)(2)+(2)(-7)+(-2)(-6)=0
$$

and

$$
\mathbf{v} \cdot(\mathbf{u} \times \mathbf{v})=(3)(2)+(0)(-7)+(1)(-6)=0
$$

$\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}, as guaranteed by Theorem 3.5.1.

THEOREM 3.5.2 Properties of Cross Product

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are any vectors in 3 -space and k is any scalar, then:
(a) $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
(b) $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w})$
(c) $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=(\mathbf{u} \times \mathbf{w})+(\mathbf{v} \times \mathbf{w})$
(d) $k(\mathbf{u} \times \mathbf{v})=(k \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(k \mathbf{v})$
(e) $\mathbf{u} \times \mathbf{0}=\mathbf{0} \times \mathbf{u}=\mathbf{0}$
(f) $\mathbf{u} \times \mathbf{u}=\mathbf{0}$

- EXAMPLE 3 Cross Products of the Standard Unit Vectors

Recall from Section 3.2 that the standard unit vectors in 3-space are

$$
\mathbf{i}=(1,0,0), \quad \mathbf{j}=(0,1,0), \quad \mathbf{k}=(0,0,1)
$$

These vectors each have length 1 and lie along the coordinate axes (Figure 3.5.1). Every vector $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ in 3-space is expressible in terms of \mathbf{i}, \mathbf{j}, and \mathbf{k} since we can write

$$
\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)=v_{1}(1,0,0)+v_{2}(0,1,0)+v_{3}(0,0,1)=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}
$$

For example,

$$
(2,-3,4)=2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}
$$

From (1) we obtain

$$
\mathbf{i} \times \mathbf{j}=\left(\left|\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right|,-\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|,\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\right)=(0,0,1)=\mathbf{k}
$$

You should have no trouble obtaining the following results:

$$
\begin{array}{lll}
\mathbf{i} \times \mathbf{i}=\mathbf{0} & \mathbf{j} \times \mathbf{j}=\mathbf{0} & \mathbf{k} \times \mathbf{k}=\mathbf{0} \\
\mathbf{i} \times \mathbf{j}=\mathbf{k} & \mathbf{j} \times \mathbf{k}=\mathbf{i} & \mathbf{k} \times \mathbf{i}=\mathbf{j} \\
\mathbf{j} \times \mathbf{i}=-\mathbf{k} & \mathbf{k} \times \mathbf{j}=-\mathbf{i} & \mathbf{i} \times \mathbf{k}=-\mathbf{j}
\end{array}
$$

Determinant Form of Cross Product

It is also worth noting that a cross product can be represented symbolically in the form

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \tag{4}\\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left|\begin{array}{cc}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{k}
$$

For example, if $\mathbf{u}=(1,2,-2)$ and $\mathbf{v}=(3,0,1)$, then

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & -2 \\
3 & 0 & 1
\end{array}\right|=2 \mathbf{i}-7 \mathbf{j}-6 \mathbf{k}
$$

which agrees with the result obtained in Example 1.

Geometric Interpretation of Cross Product

If \mathbf{u} and \mathbf{v} are vectors in 3-space, then the norm of $\mathbf{u} \times \mathbf{v}$ has a useful geometric interpretation. Lagrange's identity, given in Theorem 3.5.1, states that

$$
\begin{equation*}
\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2} \tag{5}
\end{equation*}
$$

If θ denotes the angle between \mathbf{u} and \mathbf{v}, then $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$, so (5) can be rewritten as

$$
\begin{aligned}
\|\mathbf{u} \times \mathbf{v}\|^{2} & =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} \cos ^{2} \theta \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}\left(1-\cos ^{2} \theta\right) \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} \sin ^{2} \theta
\end{aligned}
$$

Since $0 \leq \theta \leq \pi$, it follows that $\sin \theta \geq 0$, so this can be rewritten as

$$
\begin{equation*}
\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta \tag{6}
\end{equation*}
$$

But $\|\mathbf{v}\| \sin \theta$ is the altitude of the parallelogram determined by \mathbf{u} and \mathbf{v} (Figure 3.5.4). Thus, from (6), the area A of this parallelogram is given by

A Figure 3.5.4

$$
A=(\text { base })(\text { altitude })=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta=\|\mathbf{u} \times \mathbf{v}\|
$$

THEOREM 3.5.3 Area of a Parallelogram

If \mathbf{u} and \mathbf{v} are vectors in 3 -space, then $\|\mathbf{u} \times \mathbf{v}\|$ is equal to the area of the parallelogram determined by \mathbf{u} and \mathbf{v}.

\rightarrow EXAMPLE 4 Area of a Triangle

Find the area of the triangle determined by the points $P_{1}(2,2,0), P_{2}(-1,0,2)$, and $P_{3}(0,4,3)$.
Solution The area A of the triangle is $\frac{1}{2}$ the area of the parallelogram determined by the vectors $\overrightarrow{P_{1} P_{2}}$ and $\overrightarrow{P_{1} P_{3}}$ (Figure 3.5.5). Using the method discussed in Example 1 of Section 3.1, $\overrightarrow{P_{1} P_{2}}=(-3,-2,2)$ and $\overrightarrow{P_{1} P_{3}}=(-2,2,3)$. It follows that

$$
\overrightarrow{P_{1} P_{2}} \times{\overrightarrow{P_{1} P}}_{3}=(-10,5,-10)
$$

(verify) and consequently that

$$
A=\frac{1}{2}\left\|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right\|=\frac{1}{2}(15)=\frac{15}{2}
$$

Figure 3.5.5

DEFINITION 2 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in 3 -space, then

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})
$$

is called the scalar triple product of \mathbf{u}, \mathbf{v}, and \mathbf{w}.

The scalar triple product of $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$ can be calculated from the formula

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \tag{7}\\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

This follows from Formula (4) since

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) & =\mathbf{u} \cdot\left(\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| \mathbf{k}\right) \\
& =\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| u_{1}-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| u_{2}+\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| u_{3} \\
& =\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
\end{aligned}
$$

- EXAMPLE 5 Calculating a Scalar Triple Product

Calculate the scalar triple product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$ of the vectors

$$
\mathbf{u}=3 \mathbf{i}-2 \mathbf{j}-5 \mathbf{k}, \quad \mathbf{v}=\mathbf{i}+4 \mathbf{j}-4 \mathbf{k}, \quad \mathbf{w}=3 \mathbf{j}+2 \mathbf{k}
$$

Solution From (7),

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) & =\left|\begin{array}{rrr}
3 & -2 & -5 \\
1 & 4 & -4 \\
0 & 3 & 2
\end{array}\right| \\
& =3\left|\begin{array}{rr}
4 & -4 \\
3 & 2
\end{array}\right|-(-2)\left|\begin{array}{rr}
1 & -4 \\
0 & 2
\end{array}\right|+(-5)\left|\begin{array}{ll}
1 & 4 \\
0 & 3
\end{array}\right| \\
& =60+4-15=49
\end{aligned}
$$

Geometric Interpretation of Determinants

THEOREM 3.5.4

(a) The absolute value of the determinant

$$
\operatorname{det}\left[\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right]
$$

is equal to the area of the parallelogram in 2-space determined by the vectors $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$. (See Figure 3.5.7a.)
(b) The absolute value of the determinant

$$
\operatorname{det}\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right]
$$

is equal to the volume of the parallelepiped in 3-space determined by the vectors $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$. (See Figure 3.5.7b.)

(a)

(b)

A Figure 3.5.7

THEOREM 3.5.5 If the vectors $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, and
$\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$ have the same initial point, then they lie in the same plane if and only if

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=0
$$

