Faculty of Engineering
Mechanical Engineering Department
Linear Algebra and Vector Analysis MATH 1120 Lecture 12

Elementary Linear Algebra

Chapter 3

Howard Anton
Copyright © 2010 by John Wiley \& Sons, Inc. All rights reserved.

Chapter 3

Euclidean Vector Spaces

- 3.1 Vectors in 2-Space, 3-Space, and n-Space
- 3.2 Norm, Dot Product, and Distance in R ${ }^{n}$
- 3.3 Orthogonality
- 3.4 The Geometry of Linear Systems
- 3.5 Cross Product

Section 3.1 Vectors

Addition of vectors by the parallelogram or triangle rules

Subtraction:

Scalar Multiplication:

Properties of Vectors

THEOREM 3.1.1 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{n}, and if k and m are scalars, then:
(a) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(b) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(c) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(d) $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
(e) $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
(f) $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
(g) $k(m \mathbf{u})=(k m) \mathbf{u}$
(h) $\quad 1 \mathbf{u}=\mathbf{u}$

Example 1: Draw a coordinate system of the following:

1. (a) $(3,4,5)$
(b) $(-3,4,5)$
(c) $(3,-4,5)$
(a)

(b)

(c)

sketch the following vectors with the initial points located at the origin.

$$
\begin{aligned}
& \text { (a) } \mathbf{v}_{1}=(3,6) \\
& \text { (b) } \mathbf{v}_{2}=(-4,-8) \\
& \text { (c) } \mathbf{v}_{3}=(-4,-3)
\end{aligned}
$$

(a)

(b)

(c)

find the components of the vector $\overrightarrow{P_{1} P_{2}}$.
(a) $P_{1}(3,5), \quad P_{2}(2,8)$
(b) $P_{1}(5,-2,1), \quad P_{2}(2,4,2)$

Answer:
(a) $\overrightarrow{P_{1} P_{2}}=(-1,3)$
(b) $\overrightarrow{P_{1} P_{2}}=(-3,6,1)$

Examples

Example 1 Give the vector for each of the following.
(a) The vector from $(2,-7,0)$ to $(1,-3,-5)$.
(b) The vector from $(1,-3,-5)$ to $(2,-7,0)$.
(c) The position vector for $(-90,4)$

Solution

(a) Remember that to construct this vector we subtract coordinates of the starting point from the ending point.

$$
\langle 1-2,-3-(-7),-5-0\rangle=\langle-1,4,-5\rangle
$$

(b) Same thing here.

$$
\langle 2-1,-7-(-3), 0-(-5)\rangle=\langle 1,-4,5\rangle
$$

(c) Not much to this one other than acknowledging that the position vector of a point is nothing more than a vector with the point's coordinates as its components.

$$
\langle-90,4\rangle
$$

Example:

If $\mathbf{v}=(1,-3,2)$ and $\mathbf{w}=(4,2,1)$, then

$$
\begin{array}{ll}
\mathbf{v}+\mathbf{w}=(5,-1,3), & 2 \mathbf{v}=(2,-6,4) \\
-\mathbf{w}=(-4,-2,-1), & \mathbf{v}-\mathbf{w}=\mathbf{v}+(-\mathbf{w})=(-3,-5,1)
\end{array}
$$

Section 3.2 Norm, Dot Product, and Distance in R^{n}

Norm:

DEFINITION 1 If $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a vector in R^{n}, then the $\boldsymbol{n o r m}$ of \mathbf{v} (also called the length of \mathbf{v} or the magnitude of \mathbf{v}) is denoted by $\|\mathbf{v}\|$, and is defined by the formula

$$
\begin{equation*}
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+\cdots+v_{n}^{2}} \tag{3}
\end{equation*}
$$

Unit Vectors:

$$
\mathbf{u}=\frac{1}{\|\mathbf{v}\|} \mathbf{v}
$$

Example 2 Determine the magnitude of each of the following vectors.
(a) $\vec{a}=\langle 3,-5,10\rangle$
(b) $\vec{u}=\left\langle\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle$
(c) $\vec{w}=\langle 0,0\rangle$
(d) $\vec{i}=\langle 1,0,0\rangle$

Solution

There isn't too much to these other than plug into the formula.
(a) $\|\vec{a}\|=\sqrt{9+25+100}=\sqrt{134}$
(b) $\|\vec{u}\|=\sqrt{\frac{1}{5}+\frac{4}{5}}=\sqrt{1}=1$
(c) $\|\vec{w}\|=\sqrt{0+0}=0$
(d) $\|\vec{i}\|=\sqrt{1+0+0}=1$

