Linear Algebra and Vector Analysis MATH 1120 Applied Engineering, Tutorial (2):

SOLUTION

1- Use Gaussian Elimination and Gauss-Jordan Elimination to solve the following system of linear equations.

$$-2x_1 + x_2 - x_3 = 4$$
$$x_1 + 2x_2 + 3x_3 = 13$$
$$3x_1 + x_3 = -1$$

So, let's start off by getting the augmented matrix for this system.

$$\begin{bmatrix} -2 & 1 & -1 & 4 \\ 1 & 2 & 3 & 13 \\ 3 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 1 & -1 & 4 \\ 1 & 2 & 3 & 13 \\ 3 & 0 & 1 & -1 \end{bmatrix} \quad R_1 \leftrightarrow R_2 \quad \begin{bmatrix} 1 & 2 & 3 & 13 \\ -2 & 1 & -1 & 4 \\ 3 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 13 \\ -2 & 1 & -1 & 4 \\ 3 & 0 & 1 & -1 \end{bmatrix} \quad \begin{array}{c} R_2 + 2R_1 \\ R_3 - 3R_1 \\ \end{array} \quad \begin{bmatrix} 1 & 2 & 3 & 13 \\ 0 & 5 & 5 & 30 \\ 0 & -6 & -8 & -40 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 13 \\ 0 & 5 & 5 & 30 \\ 0 & -6 & -8 & -40 \end{bmatrix} \xrightarrow{\frac{1}{5}R_2} \begin{bmatrix} 1 & 2 & 3 & 13 \\ 0 & 1 & 1 & 6 \\ 0 & -6 & -8 & -40 \end{bmatrix}$$

Linear Algebra and Vector Analysis MATH 1120 Applied Engineering, Tutorial (2): SOLUTION

$$\begin{bmatrix} 1 & 2 & 3 & 13 \\ 0 & 1 & 1 & 6 \\ 0 & -6 & -8 & -40 \end{bmatrix} \qquad \begin{array}{c} R_3 + 6R_2 \\ \longrightarrow \end{array} \qquad \begin{bmatrix} 1 & 2 & 3 & 13 \\ 0 & 1 & 1 & 6 \\ 0 & 0 & -2 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 13 \\ 0 & 1 & 1 & 6 \\ 0 & 0 & -2 & -4 \end{bmatrix} \xrightarrow{-\frac{1}{2}R_3} \begin{bmatrix} 1 & 2 & 3 & 13 \\ 0 & 1 & 1 & 6 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 13 \\ 0 & 1 & 1 & 6 \\ 0 & 0 & 1 & 2 \end{bmatrix} \Rightarrow \begin{aligned} x_1 + 2x_2 + 3x_3 &= 13 \\ x_2 + x_3 &= 6 \\ x_3 &= 2 \end{aligned}$$

Summarizing up the solution to the system is,

$$x_1 = -1$$
 $x_2 = 4$ $x_3 = 2$

This substitution process is called back substitution.

$$\begin{bmatrix} 1 & 2 & 3 & 13 \\ 0 & 1 & 1 & 6 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \begin{array}{c} R_1 - 3R_3 \\ R_2 - R_3 \\ \end{array} \qquad \begin{bmatrix} 1 & 2 & 0 & 7 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Linear Algebra and Vector Analysis MATH 1120

Applied Engineering, Tutorial (2): SOLUTION

$$\begin{bmatrix} 1 & 2 & 0 & 7 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \begin{array}{c} R_1 - 2R_2 \\ \end{array} \qquad \begin{array}{c} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix} \Rightarrow \begin{aligned} x_1 &= -1 \\ x_2 &= 4 \\ x_3 &= 2 \end{aligned}$$

2- Solve the following system of linear equations.

$$x_1 - 2x_2 + 3x_3 = -2$$
$$-x_1 + x_2 - 2x_3 = 3$$
$$2x_1 - x_2 + 3x_3 = 1$$

So, here is the augmented matrix for this system.

$$\begin{bmatrix} 1 & -2 & 3 & -2 \\ -1 & 1 & -2 & 3 \\ 2 & -1 & 3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 3 & -2 \\ -1 & 1 & -2 & 3 \\ 2 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & -2 & 3 & -2 \\ 0 & -1 & 1 & 1 \\ 0 & 3 & -3 & 5 \end{bmatrix} \xrightarrow{-R_2} \begin{bmatrix} 1 & -2 & 3 & -2 \\ 0 & 1 & -1 & -1 \\ 0 & 3 & -3 & 5 \end{bmatrix}$$

$$\xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & -2 & 3 & -2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 8 \end{bmatrix} \xrightarrow{\frac{1}{8}R_3} \begin{bmatrix} 1 & -2 & 3 & -2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Linear Algebra and Vector Analysis MATH 1120 Applied Engineering, Tutorial (2): SOLUTION

$$x_1 - 2x_2 + 3x_3 = -2$$
$$x_2 - x_3 = -1$$
$$0 = 1$$

There is no solution to this system

3- Solve the following system of linear equations.

$$x_1 - 2x_2 + 3x_3 = -2$$
$$-x_1 + x_2 - 2x_3 = 3$$
$$2x_1 - x_2 + 3x_3 = -7$$

$$\begin{bmatrix} 1 & -2 & 3 & -2 \\ -1 & 1 & -2 & 3 \\ 2 & -1 & 3 & -7 \end{bmatrix}$$

From previous problem we can find that

$$\begin{bmatrix}
 1 & -2 & 3 & -2 \\
 0 & 1 & -1 & -1 \\
 0 & 0 & 0 & 0
 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 3 & -2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_1 + 2R_2 \begin{bmatrix} 1 & 0 & 1 & -4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Linear Algebra and Vector Analysis MATH 1120 Applied Engineering, Tutorial (2): SOLUTION

$$x_1 + x_3 = -4$$

$$x_2 - x_3 = -1$$

$$x_1 = -4 - x_3$$

$$x_2 = -1 + x_3$$

$$x_1 = -4 - t$$

$$x_2 = -1 + t$$

$$x_3 = t$$

 $x_1 = -4 - t$ $x_2 = -1 + t$ $x_3 = t$ t is any number