Chapter 3: Systems of Linear Equations

Def.

equations you deal with all together at once.

- Example:

$$
\begin{aligned}
2 x-4 y & =-4 \\
x+2 y & =8
\end{aligned}
$$

$$
\begin{aligned}
3 x+5 y & =-3 \\
x-5 y & =-5
\end{aligned}
$$

$$
2 x-4 y=-4
$$

$$
x+2 y=8
$$

$$
\begin{aligned}
& x+5 y+2 z=1 \\
& -x-2 y+7 z=17 \\
& 2 x+8 y-2 z=6
\end{aligned}
$$

$$
\begin{array}{ll}
x+3 z & =4 \\
2 x+y & =-8 \\
4 x+3 y+3 z & =-5
\end{array}
$$

$$
\begin{aligned}
& 2 x_{1}+x_{2}+3 x_{3}+4 x_{4}=5 \\
& x_{3}+4 x_{4}=2 \\
& 4 x_{1}+2 x_{2}+6 x_{3}+8 x_{4}=10 \\
& 6 x_{1}+3 x_{2}+14 x_{3}+35 x_{4}=33 \\
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

Number of solutions:

One Solution

No Solution

Cramer's Rule:

- Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows: $\boldsymbol{A X}=\boldsymbol{B}$, where the $n \times n$ matrix \boldsymbol{A} has a nonzero determinant. Then the theorem states that in this case the system has a unique solution, whose individual values

$$
i=1, \ldots, n .
$$

where \boldsymbol{A}_{i} is the matrix formed by replacing the i-th column of \boldsymbol{A} by the column vector \boldsymbol{B}.

Case 2 by 2: Given the system $\begin{aligned} & a_{1} x+b_{1} y=c_{1} \\ & a_{2} x+b_{2} y=c_{2}\end{aligned}$ This system has the unique solution:

$$
x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)} \quad \text { and } \quad y=\frac{\operatorname{det}(A)}{\operatorname{det}(A)}
$$

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
$$

$$
\operatorname{det}\left(A_{1}\right)=\left|\begin{array}{ll}
a_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|
$$

$$
\operatorname{det}\left(A_{2}\right)=\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|
$$

Example 1. Solve by Cramer's rule the following linear systems:

$$
\begin{aligned}
& 2 x+y=-1 \\
& 4 x+3 y=1
\end{aligned}
$$

Sol. $\quad \operatorname{det}(A)=\left|\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right|=2 \cdot 3-4 \cdot 1=6-4=2$,

$$
\begin{aligned}
& \operatorname{det}\left(A_{1}\right)=\left|\begin{array}{rr}
-1 & 1 \\
1 & 3
\end{array}\right|=-1 \cdot 3-1 \cdot 1=-3-1=-4 \\
& \operatorname{det}\left(A_{2}\right)=\left|\begin{array}{rr}
2 & -1 \\
4 & 1
\end{array}\right|=2 \cdot 1-4 \cdot(-1)=2+4
\end{aligned}
$$

$$
x=\frac{-4}{2}=-2
$$

and

$$
y=\frac{6}{2}=3 .
$$

Case 3 by 3: Given the system

$$
a_{1} x+b_{1} y+c_{1} x=d_{1}
$$

$$
a_{2} x+b_{2} y+c_{2} x=d_{2} \text {. This system has the unique solution: }
$$

$$
a_{3} x+b_{3} y+c_{3} x=d_{3}
$$

where
$\operatorname{det}(A)=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|, \operatorname{det}\left(A_{1}\right)=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right| \quad \operatorname{det}\left(A_{2}\right)=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right| \quad \operatorname{det}\left(A_{3}\right)=\left|\begin{array}{lll}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|$
Example 2. Solve by Cramer's rule the following linear systems:

$$
\begin{aligned}
& 2 \cdot x+4 \cdot y+3 \cdot z=5 \\
& 9 \cdot x+6 \cdot y+8 \cdot z=7 \\
& 11 \cdot x+13 \cdot y+10 \cdot z=12
\end{aligned}
$$

Write down the coefficient and parameter matrices,

$$
A=\left[\begin{array}{ccc}
2 & 4 & 3 \\
9 & 6 & 8 \\
11 & 13 & 10
\end{array}\right]
$$

$$
B=\left[\begin{array}{c}
5 \\
7 \\
12
\end{array}\right]
$$

Calculate the determinant for A (this will be reused), and calculate the determinants for matrices below. Note: when trying to find the first parameter ' x ' we replace the first column in A with B.

$$
\begin{aligned}
& x=\frac{\left|\begin{array}{ccc}
5 & 4 & 3 \\
7 & 6 & 8 \\
12 & 13 & 10
\end{array}\right|}{\mid A}= \\
& y=\frac{\left\lvert\, \begin{array}{ccc}
2 & 5 & 3 \\
9 & 7 & 8 \\
11 & 12 & 10
\end{array}\right.}{\mid A}= \\
& z=\frac{\left|\begin{array}{ccc}
2 & 4 & 5 \\
9 & 6 & 7 \\
11 & 13 & 12
\end{array}\right|}{|A|}=
\end{aligned}
$$

Gauss Elimination Method:

- Given a linear system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$.
- Construct the augmented matrix for the system $[A B]$.
- Use elementary row operations to transform the augmented matrix $[A B]$ into a triangular one $\left[A^{\prime} B^{\prime}\right]$.
- Write down the new linear system $A^{\prime} X=B^{\prime}$ for which the triangular matrix is the associated augmented matrix.
- Solve the new system by method of back substitution.
- Elementary Row Operations: There are three types of elementary row operations which may be performed on the rows of a matrix:
$: \mathrm{R}_{i j}$, Swap the positions of two rows i and j.
: $k R$, Multiply the row i by a nonzero scalar k.
$: k R_{j}+R_{j}$, Add to the row j a scalar multiple of the row i.
- We notice that these operations do not change the solution set.

Example: Solve by Gauss Elimination Method the following linear systems:

$$
\begin{aligned}
& \qquad \begin{array}{l}
2 x+y-z=8 \\
-3 x-y+2 z= \\
-11 \\
\text { Sol. } \\
\qquad \begin{array}{l}
2 x+y+2 z=
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

$|A B|=\left[\begin{array}{ccc|c}2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3\end{array}\right] \xrightarrow{\frac{3}{2} R_{1}+R_{2}}\left[\begin{array}{ccc|c}R_{1}+R_{3} \\ 0 & 1 / 2 & -1 & 8 \\ 0 & 2 & 1 & 1 \\ 0\end{array}\right] \xrightarrow{-4 R_{2}+R_{3}}\left[\begin{array}{ccc|c}2 & 1 & -1 & 8 \\ 0 & 1 / 2 & 1 / 2 & 1 \\ 0 & 0 & -1 & 1\end{array}\right]$
Write down the new linear system associated with the obtained augmented matrix:

$$
\begin{array}{r}
2 x+y-z=8 \\
\frac{1}{2} y+\frac{1}{2} z=1 \\
-z=1
\end{array}
$$

Solve the new system by method of back substitution: From the 3rd equation we get: $z=-1$. Substitute the value of z in the 2 nd equation we obtain: $1 / 2 y-1 / 2=1$, that is, $y=3$. Substitute the values of z and y in the 1 st equation we obtain: $2 x+3$
$-(-1)=8$, that is, $x=2$. Thus the solution is $(2,3-1)$.

Example. Solve by Gauss Elimination Method the following linear systems:

Sol.

$$
\begin{aligned}
x_{1}+5 x_{2} & =7 \\
-2 x_{1}-7 x_{2} & =-5 .
\end{aligned}
$$

$|A B|=\left(\begin{array}{ccc}1 & 5 & 7 \\ -2 & -7 & -5\end{array}\right) \xrightarrow{2 R_{1}+R_{2}}\left(\begin{array}{lll}1 & 5 & 7 \\ 0 & 3 & 9\end{array}\right) \xrightarrow{\frac{1}{3} R_{2}}\left(\begin{array}{ccc}1 & 5 & 7 \\ 0 & 1 & 3\end{array}\right)$

Write down the new linear system associated with the obtained augmented matrix:

$$
\begin{aligned}
x_{1}+5 x_{2} & =7 \\
x_{2} & =3
\end{aligned}
$$

Solve the new system by method of back substitution: From the $2^{\text {nd }}$ equation we get: $x_{2}=3$. Substitute the value of x_{2} in the $1^{\text {st }}$ equation we obtain: $x_{1}+5(3)=7$, that is, $x_{1}=-8$.

Example: Solve by Gauss Elimination Method the following linear systems:

$$
\begin{gathered}
2 x_{1}+x_{2}-x_{3}+2 x_{4}=5 \\
4 x_{1}+5 x_{2}-3 x_{3}+6 x_{4}=9 \\
-2 x_{1}+5 x_{2}-2 x_{3}+6 x_{4}=4 \\
4 x_{1}+11 x_{2}-4 x_{3}+8 x_{4}=2
\end{gathered}
$$

Sol.

$$
|A B|=\left[\begin{array}{rrrr|r}
2 & 1 & -1 & 2 & 5 \\
4 & 5 & -3 & 6 & 9 \\
-2 & 5 & -2 & 6 & 4 \\
4 & 11 & -4 & 8 & 2
\end{array}\right] \xrightarrow{R_{1}+R_{3},-2 R_{1}+R_{4},-2 R_{1}+R_{2}}\left[\begin{array}{llll|r}
2 & 1 & -1 & 2 & 5 \\
0 & 3 & -1 & 2 & -1 \\
0 & 6 & -3 & 8 & 9 \\
0 & 9 & -2 & 4 & -8
\end{array}\right]
$$

$$
\xrightarrow{-2 R_{2}+R_{3},-3 R_{2}+R_{4}}\left[\begin{array}{rrrr|r}
2 & 1 & -1 & 2 & 5 \\
0 & 3 & -1 & 2 & -1 \\
0 & 0 & -1 & 4 & 11 \\
0 & 0 & 1 & -2 & -5
\end{array}\right] \xrightarrow{R_{3}+R_{4}}\left[\begin{array}{rrrr|r}
2 & 1 & -1 & 2 & 5 \\
0 & 3 & -1 & 2 & -1 \\
0 & 0 & -1 & 4 & 11 \\
0 & 0 & 0 & 2 & 6
\end{array}\right]
$$

The linear system associated to the new augmented matrix is :

$$
\begin{array}{r}
2 x_{1}+x_{2}-x_{3}+2 x_{4}=5 \\
3 x_{2}-x_{3}+2 x_{4}=-1 \\
-x_{3}+4 x_{4}=11 \\
2 x_{4}=6
\end{array}
$$

Solving by back substitution, we obtain

$$
x_{4}=3, \quad x_{3}=1, \quad x_{2}=-2, \quad x_{1}=1 .
$$

Gauss-Jordan Elimination Method:
The Gauss-Jordan elimination method to solve a system of linear equations $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ is described in the following steps:

1. Write the augmented matrix of the system $[A B]$.
2. Use row operations to transform the augmented matrix in the form $\left|A^{\prime} B^{\prime}\right|$ with \boldsymbol{A}^{\prime} is the identity matrix. The solution \boldsymbol{X} is the values of the vector \boldsymbol{B}^{\prime}, that is, $\boldsymbol{X}=\boldsymbol{B}^{\prime}$.
Example: Solve by Gauss-Jordan Elimination Method: $\begin{aligned} 2 x+y-z & =8 \\ -3 x-y+2 z & =-11 \\ -2 x+y+2 z & =-3\end{aligned}$
Sol.

$$
|A B|=\left[\begin{array}{ccc|c}
2 & 1 & -1 & 8 \\
-3 & -1 & 2 & -11 \\
-2 & 1 & 2 & -3
\end{array}\right] \xrightarrow{\frac{3_{1}+R_{3}}{2} R_{1}+R_{2}}\left[\begin{array}{ccc|c}
2 & 1 & -1 & 8 \\
0 & 1 / 2 & 1 / 2 & 1 \\
0 & 2 & 1 & 5
\end{array}\right] \xrightarrow{4 R_{2}+R_{3}}\left[\begin{array}{ccc|c}
2 & 1 & -1 & 8 \\
0 & 1 / 2 & 1 / 2 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

$$
\left.\xrightarrow{\substack{R_{1}-R_{3} \\
R_{2}+\frac{1}{2} R_{3}}}\left[\begin{array}{ccc|c}
2 & 1 & 0 & 7 \\
0 & 1 / 2 & 0 & 3 / 2 \\
0 & 0 & -1 & 1
\end{array}\right] \xrightarrow{2 R_{2},}\left[\begin{array}{ccc|c}
2 & 1 & 0 & 7 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{array}\right] \xrightarrow{\frac{R_{2}+R_{1}}{\frac{1}{2} R_{1}}} \begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

Thus the solution is $(2,3,-1)$.

More Examples:

Example 2: Use Gaussian elimination to solve the system of linear equations

$$
\begin{aligned}
2 x_{2}+x_{3} & =-8 \\
x_{1}-2 x_{2}-3 x_{3} & =0 \\
-x_{1}+x_{2}+2 x_{3} & =3
\end{aligned}
$$

Example 3: Use Gaussian elimination to solve the system of linear equations

$$
\left\{\begin{array}{l}
x+y+z=5 \\
2 x+3 y+5 z=8 \\
4 x+5 z=2
\end{array}\right.
$$

Solutions:

$$
\begin{aligned}
2 x_{2}+x_{3} & =-8 \\
x_{1}-2 x_{2}-3 x_{3} & =0 \\
-x_{1}+x_{2}+2 x_{3} & =3
\end{aligned} \quad\left(\begin{array}{cccc}
0 & 2 & 1 & -8 \\
1 & -2 & -3 & 0 \\
-1 & 1 & 2 & 3
\end{array}\right)
$$

Swap Row 1 and Row 2.
$\begin{aligned} x_{1}-2 x_{2}-3 x_{3} & =0 \\ 2 x_{2}+x_{3} & =-8 \\ -x_{1}+x_{2}+2 x_{3} & =3\end{aligned} \quad\left(\begin{array}{cccc}1 & -2 & -3 & 0 \\ 0 & 2 & 1 & -8 \\ -1 & 1 & 2 & 3\end{array}\right)$

Add Fow 1 to Row 3.

$$
\begin{aligned}
x_{1}-2 x_{2}-3 x_{3} & =0 \\
2 x_{2}+x_{3} & =-8 \\
-x_{2}-x_{3} & =3
\end{aligned} \quad\left(\begin{array}{cccc}
1 & -2 & -3 & 0 \\
0 & 2 & 1 & -8 \\
0 & -1 & -1 & 3
\end{array}\right)
$$

Swap Row 2 and Row 3.

$$
x_{1}-2 x_{2}-3 x_{3}=0 \quad\left(\begin{array}{cccc}
1 & -2 & -3 & 0 \\
0 & -1 & -1 & 3 \\
0 & x_{2}-x_{2}+x_{3} & =-8
\end{array}\right)
$$

Add twice Row 2 to Row 3.

$$
\begin{aligned}
x_{1}-2 x 2-3 x 3 & =0 \\
-x 2-x 3 & =3 \\
-x_{3} & =-2
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
1 & -2 & -3 & 0 \\
0 & -1 & -1 & 3 \\
0 & 0 & -1 & -2
\end{array}\right)
$$

Add - 1 timus Rowe 3 to Row 2.
Addi -3 timies Row 3 to Reow 1.

$$
\begin{aligned}
x_{1}-2 x_{2} & =6 \\
& =5 \\
& =-2
\end{aligned}
$$

$$
\left(\begin{array}{ll}
1 & -2 \\
0 & -1 \\
0 & 0
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
0 & 6 \\
0 & 5 \\
-1 & -2
\end{array}\right)
$$

Add -2 times Row 2 to Row 1 .

$$
\begin{aligned}
& 21= \\
&-x_{2}-4 \\
&-x_{3}= \\
& \hline
\end{aligned} \quad\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & -1 & 0 & 5 \\
0 & 0 & -1 & -2
\end{array}\right)
$$

Multiply Rooss 2 and 3 by -1 .

$$
\begin{array}{rlrl}
x_{1} & & & \\
& & -4 \\
x_{2} & = & -5 \\
& x_{3} & =2
\end{array}
$$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -4 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
x+y+z=5 \\
2 x+3 y+5 z=8 \\
4 x+5 z=2
\end{array}\right.
$$

Solution. The augmented matrix of the system is the following.

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 5 \\
2 & 3 & 5 & 8 \\
4 & 0 & 5 & 2
\end{array}\right]
$$

We will now pefform row operations until we obtair a matrix in rediced row echelon Sorm.

$$
\begin{aligned}
& {\left[\begin{array}{lll|c}
1 & 1 & 1 & 5 \\
2 & 3 & 5 & 8 \\
1 & 0 & 5 & 2
\end{array}\right] \xrightarrow{R_{2} 2 R_{2}}\left[\begin{array}{cccc}
1 & 1 & 1 & 5 \\
0 & 1 & 3 & -2 \\
1 & 0 & 5 & 2
\end{array}\right]} \\
& \xrightarrow{R_{2}-i h_{2}}\left[\begin{array}{cccc}
1 & 1 & 1 & 5 \\
0 & 1 & 3 & -2 \\
0 & -1 & 1 & -18
\end{array}\right] \\
& \xrightarrow{R_{1}+4 K_{2}}\left[\begin{array}{cccc}
1 & 1 & 1 & 3 \\
0 & 1 & 3 & -2 \\
0 & 0 & 13 & -26
\end{array}\right] \\
& \xrightarrow{\frac{H}{2}}\left[\begin{array}{lll|l}
1 & 1 & 1 & 5 \\
0 & 1 & 3 & -2 \\
0 & 0 & 1 & -2
\end{array}\right] \\
& \xrightarrow{R_{2} \quad 3 R_{3}}\left[\begin{array}{rrrr}
1 & 1 & 1 & 5 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -2
\end{array}\right] \\
& \xrightarrow{R} H_{3}\left[\begin{array}{cccc}
1 & 1 & 0 & 7 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -2
\end{array}\right] \\
& \xrightarrow{r_{1}-r_{2}} \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -2
\end{array}\right]
\end{aligned}
$$

From this final matrix, we can read the solution of the system. It is

$$
x=3, \quad y=4, \quad z=-2 .
$$

