King Saud University
MATH 111 (Integral Calculus)

Department of Mathematics
$2^{\text {nd }}$ Semester 1432-1433 H

Final Exam

Duration: 3 Hours

Student's Name	Student's ID	Group Number	Lecturer's Name

Question Number	I	II	III	IV	Total
Mark					

Question I: A. Choose the correct answer.
(8 Marks)
(1) $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{3}} \sum_{i=1}^{n}\left(3 i^{2}-1\right)\right)$ is equal to
(a) 0
(b) $\frac{1}{2}$
(b) 1
(d) None of the previous
(2) If $F(x)=\int_{2 x}^{3 x} \frac{t-1}{t+1} d t$ then $F^{\prime}(0)$ is equal to
(a) 1
(b) -1
(b) 5
(d) None of the previous
(3) $2 \ln |x|-\ln |x+1|-\ln |x+1|^{-1}$ equals
(a) $2 \ln |x|$
(b) $\ln \left|\frac{x^{2}}{x+1}\right|$
(c) $\ln \left|x^{2}(x+1)\right|$
(d) None of the previous
(4) The value of $\int_{0}^{\ln 2} \frac{1}{(\cosh x+\sinh x)^{2}} d x$ is
(a) $\frac{-3}{4}$
(b) $\frac{3}{8}$
(c) $\ln 2$
(d) None of the previous
(5) The partial fractions of $\frac{3}{x^{4}+9 x^{2}}$ are
(a) $\frac{A}{x}+\frac{B x+C}{x^{2}+9}$
(b) $\frac{A}{x^{2}}+\frac{B x+C}{(x+3)^{2}}$
(c) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+9}$
(d) None of the previous
(6) If $(x, y)=(2,1)$ is the rectangular coordinates representation of a point, then a corresponding polar coordinates representation (r, θ) is
(a) $\left(\sqrt{5}, \tan ^{-1}\left(\frac{1}{2}\right)\right)$
(b) $\left(-\sqrt{5}, \tan ^{-1}\left(\frac{1}{2}\right)\right)$
(c) $\left(\sqrt{5}, \tan ^{-1}\left(\frac{1}{2}\right)+\pi\right)$
(d) None of the previous
(7) If $(\boldsymbol{r}, \boldsymbol{\theta})=(5, \pi)$ is a polar coordinates representation of a point, then the corresponding rectangular representation (x, y) is
(a) $(5,0)$
(b) $(-5,0)$
(c) $(0,5)$
(d) None of the previous
(8) The plane curve $x=2+4 \operatorname{cost}, y=3+4 \sin t, 0 \leq t \leq 2 \pi$, is a circle with center
(a) $(-2,-3)$
(b) $(4,4)$
(c) $(2,3)$
(d) None of the previous
B. Prove that for any real numbers r and s

$$
e^{r} e^{s}=e^{r+s}
$$

C. Find the value of c that satisfies the conclusion of the Integral Mean Value Theorem on [0,3] for

$$
f(x)=x^{2}+1
$$

D. Find the value of x that satisfies the equation $\ln \left(\frac{e^{-4 x}}{e^{2 x}}\right)=3$.
(1.5 Marks)

Question II: A. Compute the following integrals
(i) $\int \sqrt{2 x-x^{2}} d x$
(4 Marks)
(ii) $\int \frac{\ln x}{x^{3}} d x$
(iii) $\int \frac{e^{x}}{\sqrt{16+e^{2 x}}} d x$
(iv) $\int \tan ^{\frac{3}{2}}(x) \sec ^{4}(x) d x$
(3 Marks)
B. Determine whether the following improper integrals converge or diverge
(i) $\int_{1}^{5} \frac{1}{1-x} d x$
(2.5 Marks)

QUESTION III

A. Sketch and Find the area of the region bounded by the graphs of (5 Marks)
B. Let R be the region in the first quadrant bounded by the graphs of $y=\sqrt{\boldsymbol{x}}, \boldsymbol{y}=0$ and $\boldsymbol{y}=2-\boldsymbol{x}$ Sketch R and Find the volume of the solid resulting by revolving R about
(i) the x-axis.
(ii) the y-axis.

C. Find the arc length of the portion of the curve of $y=\left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}}$ from $x=\frac{1}{8}$ to $x=1$. (4 Marks)
QUESTION IV
Sketch and find the area of the region bounded by the graph of $r=3-3 \sin \theta$ for $0 \leq \theta \leq 2 \pi$. (5 Marks)

