

King Saud University

Department of Mathematics

2nd Semester 1432-1433 H

MATH 111 (Integral Calculus)

Final Exam

Duration: 3 Hours

Student's Name	Student's ID	Group Number	Lecturer's Name

Question Number	I	II	111	IV	Total
Mark					

(4) The value of $\int_0^{ln2} \frac{1}{(coshx+sinhx)^2} dx$ is				
(a) $\frac{-3}{4}$	(b) $\frac{3}{8}$			
(c) <i>ln</i> 2	(d) None of the previous			
(5) The partial fractions of $\frac{3}{x^4+9x}$	$\frac{1}{2}$ are			
(a) $\frac{A}{x} + \frac{Bx+C}{x^2+9}$	(b) $\frac{A}{x^2} + \frac{Bx+C}{(x+3)^2}$			
(c) $\frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+9}$	(d) None of the previous			
(6) If $(x, y) = (2, 1)$ is the rectangular coordinates representation of a point, then a corresponding polar coordinates representation (r, θ) is				
(a) $\left(\sqrt{5}, tan^{-1}\left(\frac{1}{2}\right)\right)$	(b) $\left(-\sqrt{5}, tan^{-1}\left(\frac{1}{2}\right)\right)$			
(c) $\left(\sqrt{5}, tan^{-1}\left(\frac{1}{2}\right) + \pi\right)$	(d) None of the previous			
(7) If $(r, \theta) = (5, \pi)$ is a polar coordinates representation of a point, then the corresponding rectangular representation (x, y) is				
(a) (5,0)	(b) (-5,0)			
(c) (0,5)	(d) None of the previous			
(8) The plane curve $x=2+4cost$, $y=3+4sint$, $0\leq t\leq 2\pi$, is a circle with center				
(a) (-2,-3)	(b) (4, 4)			
(c) (2,3)	(d) None of the previous			

Г

B. Prove that for any real numbers *r* and *s* (2 Marks) $e^r e^s = e^{r+s}$ C. Find the value of c that satisfies the conclusion of the Integral Mean Value Theorem on [0,3] for $f(x) = x^2 + 1$ (2.5 Marks)

Question II: A. Compute the following integrals

(i)
$$\int \sqrt{2x-x^2}dx$$

(4 Marks)

(ii)
$$\int \frac{\ln x}{x^3} dx$$
 (3 Marks)
(iii) $\int \frac{e^x}{\sqrt{16+e^{2x}}} dx$ (4 Marks)

```
(iv) \int tan^{\frac{3}{2}}(x)sec^4(x)dx
```

(3 Marks)

B. Determine whether the following improper integrals converge or diverge

(i)
$$\int_{1}^{5} \frac{1}{1-x} dx$$

(2.5 Marks)

(ii) $\int_0^\infty x^2 e^{-x^3} dx$

(2.5 Marks)

QUESTION III

A. <u>Sketch</u> and <u>Find the area</u> of the region bounded by the graphs of $y = x^2$ and y = -x.

(5 Marks)

B. Let R be the region in the first quadrant bounded by the graphs of $y = \sqrt{x}$, y = 0 and y = 2 - x<u>Sketch R</u> and <u>Find the volume</u> of the solid resulting by revolving R about

(i) the x –axis.

(ii) the y –axis.

(6 Marks)

C. Find the arc length of the portion of the curve of $y = \left(1 - x^{\frac{2}{3}}\right)^{\frac{3}{2}}$ from $x = \frac{1}{8}$ to x = 1. (4 Marks)

QUESTION IV

<u>Sketch</u> and <u>find the area</u> of the region bounded by the graph of $r = 3 - 3sin\theta$ for $0 \le \theta \le 2\pi$. (5 Marks)

Good Luck 🙂