Final Exam

Question 1:

(a) Find the solution of the following LP problem by inspection (without using the simplex algorithm).

$$
\begin{array}{lr}
\max z=x_{1} \\
\text { s.t. } \quad 5 x_{1}+x_{2}=10 \\
6 x_{1}+x_{3}=3 \\
& 3 x_{1}+x_{4}=9 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0 .
\end{array}
$$

(b) Use the two phase method to find the optimal solution to the following LP:

$$
\begin{array}{r}
\max z=4 x_{1}+3 x_{2} \\
\text { s.t. } \quad 2 x_{1}+x_{2} \geq 3 \\
4 x_{1}+x_{2} \leq 5 \\
\\
x_{1}, x_{2} \geq 0
\end{array}
$$

Question 2:

If the following LP:

$$
\begin{array}{ll}
\max & z=2 x_{1}+x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 6 \\
& 4 x_{1}+x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

has the optimal solution $z^{*}=8$ at $x_{1}^{*}=2, x_{2}^{*}=4$, and $B V=\left\{x_{1}, x_{2}\right\}$.
(a) If $c_{1}=2$ is changed to $c_{1}=2+\Delta$, find the values of Δ such that the optimal solution remains optimal, and find the value of the new solution x_{B}^{*} and z^{*}.
(b) What is the solution if $\Delta=1$, and if $\Delta=3$?

Question 3:

(a) Solve the following problems by finding the optimal solution and the range of λ for which the optimal solution remains optimal.

$$
\begin{aligned}
\max z= & (2-2 \lambda) x_{1}+(3+5 \lambda) x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 6 \\
& x_{1}+2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(b) Use the optimal tableau to find the solution if $\lambda=1$.

Use branch and bound to solve the following integer problem.

$$
\begin{aligned}
\max z= & 3 x_{1}+5 x_{2} \\
\text { s.t. } & 3 x_{1}+3 x_{2} \leq 13 \\
& 3 x_{1}+6 x_{2} \leq 16 \\
& x_{1}, x_{2} \text { are nonnegative integers. }
\end{aligned}
$$

Question 5:

You are given the following constraints

$$
\begin{aligned}
x_{1}+x_{2} & \geq 6 \\
2 x_{1}+x_{2} & \geq 8 \\
x_{1}+x_{2} & \leq 5 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(a) Can we solve any problem with these constraints? why?
(b) If constraint one falls short, there is 2SR penalty for each unit. If constraint two falls short, there is 1 SR penalty for each unit.
(1) Formulate the goal programming problem and solve it.
(2) Explain what the solution of this problem represents.

Question 6:

Consider the following LP:

$$
\begin{aligned}
\max z= & c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. } & a_{1} x_{1}+a_{2} x_{2} \leq b_{1} \\
& a_{3} x_{1}+a_{4} x_{2} \leq b_{2} \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

you are given that the optimal tableau for this LP is

$$
\begin{aligned}
z+2 s_{1}+s_{2} & =1 \\
x_{2}+3 s_{1}+2 s_{2} & =2 \\
x_{1}+4 s_{1}+3 s_{2} & =3
\end{aligned}
$$

Determine a_{i}, b_{j}, c_{j} for $i=1,2,3,4, j=1,2$.

Question 7:

Consider the maximization problem with the optimal tableau:

$$
\begin{array}{r}
z+2 x_{1}+x_{2}=10 \\
3 x_{1}+2 x_{2}+s_{1}=3 \\
4 x_{1}+3 x_{2}+s_{2}=5
\end{array}
$$

Determine the second best bfs to this LP.

