

Final Exam, S1 1442 M 507 - Advanced Operations Research

Time: 3 hours

Answer the following questions:

Q1:[3+2+4]

In the reliability diagram below, the reliability of each component is constant and independent. Assuming that each has the same reliability ${\tt R}$, compute the system reliability as a function of ${\tt R}$ using the following methods:

- a. Decomposition using B as the keystone element.
- b. The reduction method.
- c. Compute the importance of each component if $R_A = 0.85$, $R_B = 0.95$,

$$R_{\rm C} = 0.9 \text{ and } R_{\rm D} = 0.98$$

Q2:[5+2]

(a) If X(t) represents a size of a population where X(0) = 1, using the following differential equations:

$$\frac{dp_0(t)}{dt} = -\lambda_0 p_0(t) \tag{1}$$

$$\frac{dp_n(t)}{dt} = \lambda_{n-1}p_{n-1}(t) - \lambda_n p_n(t), \ n=1,2,3, \dots (2)$$

Prove that: $X(t) \sim geom(p)$, $p = e^{-\lambda t}$ when $\lambda_0 = 0$ and $\lambda_n = n\lambda$, and then find the mean and variance of this process.

(b) Let X(t) be a Yule process that is observed at a random time U, where U is uniformly distributed over [0,1]. Show that $pr\{X(U)=k\}=p^k/(\beta k)$ for k=1,2,..., with $p=1-e^{-\beta}$.

Q3:[3+5]

- (a) If a random variable $T \sim \text{Weibull}(\eta, \beta)$. Compute its failure rate function and MTTF.
- (b) Suppose the life distribution of an item has failure rate function $\lambda(t) = t^3$, $0 < t < \infty$.
- i) What is the probability the item survives to age 2?
- ii) What is the probability that the item's life is between 0.4 and 1.4?
- iii) What is the mean life of the item?

Q4: [4+4]

(a) For the Markov process $\{X_t\}$, t=0,1,2,...,n with states $i_0,i_1,i_2,...,i_{n-1},i_n$

Prove that:
$$\Pr\{X_0 = i_0, X_1 = i_1, X_2 = i_2, ..., X_n = i_n\} = p_{i_0} P_{i_0 i_1} P_{i_1 i_2} ... P_{i_{n-1} i_n} \text{ where } p_{i_0} = \Pr\{X_0 = i_0\}$$

- (b) Consider the problem of sending a binary message, 0 or 1, through a signal channel consisting of several stages, where transmission through each stage is subject to a fixed probability of error α . Suppose that $X_0=0$ is the signal that is sent and let X_n be the signal that is received at the nth stage. Assume that $\{X_n\}$ is a Markov chain with transition probabilities $P_{00}=P_{11}=1-\alpha$ and $P_{01}=P_{10}=\alpha$, where $0<\alpha<1$.
- i) Determine $\Pr\{X_0=0,X_1=0,X_2=0\}$, the probability that no error occurs up to stage n=2.
- ii) Determine the probability that a correct signal is received at stage 2.

Q5: [8]

A furniture company produces chairs and tables, subject to the board-foot and man-hour restrictions, our problem is to maximize the profit function $z = \$45x_1 + \$80x_2$ subject to

$$5 x_1 + 20 x_2 \le 400$$
$$10 x_1 + 15 x_2 \le 450$$
$$x_1 \ge 0 , x_2 \ge 0$$

Here, x_1 stands for the number of chairs and x_2 for the number of tables to be manufactured, where, we have a total of 400 board-feet of wood and 450 man-hours to combine into a manufacturing schedule for chairs and tables.

Model Answer

Q1:[3+2+4]

In the reliability diagram shown in Fig. 1, the reliability of each component is constant and independent. Assuming that each has the same reliability R, compute the system reliability as a function of R using the following methods:

a) Decomposition using B as the keystone element.

Fig. 1: Reliability diagram

Using B as the keystone element, we have two cases i.e., the case when B functions and the case when it does not.

For the case when B functions, the system reduced to Fig 2.

Fig. 2: The case when B functions

Thus the reliability of the system depends only on the reliability of component A and D. Note that $R_A = R_B = R_C = R_D = R$

Therefore,

$$R^+ = R_A R_D = R^2$$

For the case when B fails, the system block is as shown in Fig. 3, which is a series system.

Fig. 3: The case when B fails to work

Thus the reliability of the system depends on A, C, and D, therefore we have:

$$R^- = R_A R_C R_D = R^3$$

Thus the reliability of the system using the two decompositions is given as:

$$R_{system} = R_B R^+ + (1 - R_B) R^-$$

$$R_{system} = R(R^2) + (1 - R) R^3$$

$$R_{system} = 2R^3 - R^4$$

b) Using the reduction method

With this method, it can be seen that components B and C are in parallel and jointly in series with A and D. therefore the reduced system is given in Fig. 4.

Fig. 4: Reduced system

For parallel components B and C, we have

$$\begin{split} R_{B||C} &= 1 - \prod_{i=1}^{2} (1 - R_i) \\ R_{B||C} &= R_B + R_C - R_B R_C \\ R_{B||C} &= 2R - R^2 \end{split}$$

The reliability of the system is thus given as:

$$\begin{split} R_{\text{system}} &= R_A R_{B\parallel C} R_D \\ R_{\text{system}} &= R (2R - R^2) R \\ R_{\text{system}} &= 2R^3 - R^4 \end{split}$$

c)

Recall that the reliability of the system is given as:

$$R_{\text{system}} = R_{\text{A}}R_{\text{D}}(R_{\text{B}} + R_{\text{C}} - R_{\text{B}}R_{\text{C}})$$

The importance of each component is computed by taking the partial derivative with respect to each of the component.

Thus the importance of component A is given as:

$$\begin{split} \frac{\delta R_{\text{system}}}{\delta R_{A}} &= \frac{\delta (R_{A}R_{D}(R_{B} + R_{C} - R_{B}R_{C}))}{\delta R_{A}} \\ I_{A} &= R_{D}(R_{B} + R_{C} - R_{B}R_{C}) \end{split}$$

The importance of component B is given as:

$$\frac{\delta R_{\text{system}}}{\delta R_B} = \frac{\delta (R_A R_D (R_B + R_C - R_B R_C))}{\delta R_B}$$

$$I_B = R_A R_D - R_A R_D R_C$$

The importance of component C is given as:

$$\frac{\delta R_{\text{system}}}{\delta R_C} = \frac{\delta (R_A R_D (R_B + R_C - R_B R_C))}{\delta R_C}$$

$$I_C = R_A R_D - R_A R_B R_D$$

The importance of component D is given as:

$$\frac{\delta R_{system}}{\delta R_D} = \frac{\delta (R_A R_D (R_B + R_C - R_B R_C))}{\delta R_D}$$
$$I_D = R_A (R_B + R_C - R_B R_C)$$

$$\Rightarrow I_A = 0.9751, I_B = 0.0833, I_c = 0.04165 \text{ and } I_D = 0.84575$$

Q2:[5+2]

(a)
$$\frac{dp_{0}(t)}{dt} = -\lambda_{0}p_{0}(t)$$

$$\frac{dp_{n}(t)}{dt} = \lambda_{n-1}p_{n-1}(t) - \lambda_{n}p_{n}(t), \ n=1,2,3, \dots$$
 (2)

The initial condition is $X(0) = 1 \implies p_1(0) = 1$

$$\Rightarrow p_n(0) = \begin{cases} 1 & \text{, n=1} \\ 0 & \text{, otherwise} \end{cases}$$

$$\lambda_0 = 0 \qquad (1) \Rightarrow \frac{dp_0(t)}{dt} = 0$$
$$\Rightarrow p_0(t) = 0 \qquad (3)$$

$$(2) \Rightarrow \frac{dp_n(t)}{dt} = \lambda_{n-1}p_{n-1}(t) - \lambda_n p_n(t)$$

$$\Rightarrow \frac{dp_n(t)}{dt} + \lambda_n p_n(t) = \lambda_{n-1}p_{n-1}(t), \quad n = 1, 2, \dots$$

$$\therefore \ \lambda_n = n\lambda, \ \lambda_{n-1} = (n-1)\lambda$$

$$\therefore \frac{dp_n(t)}{dt} + n\lambda p_n(t) = (n-1)\lambda p_{n-1}(t), \text{ n=1,2, ...}$$

Multiply both sides by $e^{n\lambda t}$

$$e^{n\lambda t} \left[\frac{dp_n(t)}{dt} + n\lambda p_n(t) \right] = (n-1)\lambda p_{n-1}(t)e^{n\lambda t}$$

$$\therefore \frac{d}{dt} \left[p_n(t)e^{n\lambda t} \right] = (n-1)\lambda p_{n-1}(t)e^{n\lambda t}$$

$$\Rightarrow \int_0^t d\left[p_n(x)e^{n\lambda x} \right] = (n-1)\lambda \int_0^t p_{n-1}(x)e^{n\lambda x}dx$$

$$\therefore \left[p_n(x)e^{n\lambda x} \right]_0^t = (n-1)\lambda \int_0^t p_{n-1}(x)e^{n\lambda x}dx$$

$$\Rightarrow p_n(t) = e^{-n\lambda t} \left[p_n(0) + (n-1)\lambda \int_0^t p_{n-1}(x)e^{n\lambda x}dx \right], \quad n = 1, 2, \dots (4)$$

which is a recurrence relation.

at
$$n=1$$

$$p_1(t) = e^{-\lambda t} [p_1(0) + 0] = e^{-\lambda t}$$
 (5)

at
$$n=2$$

$$p_{2}(t) = e^{-2\lambda t} \left[p_{2}(0) + \lambda \int_{0}^{t} p_{1}(x)e^{2\lambda x} dx \right]$$

$$(5) \Rightarrow p_1(x) = e^{-\lambda x}$$

$$\therefore p_2(t) = e^{-2\lambda t} \left[\lambda \int_0^t e^{-\lambda x} e^{2\lambda x} dx \right]$$

$$\therefore p_2(t) = \lambda e^{-2\lambda t} \int_0^t e^{\lambda x} dx$$
$$= e^{-\lambda t} (1 - e^{-\lambda t})^1 \qquad (6)$$

Similarly as (5) and (6), we deduce that

$$\begin{split} p_n(t) &= e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} \\ &= p (1 - p)^{n-1}, \quad p = e^{-\lambda t}, \ n = 1, 2, \ \dots \end{split}$$

$$\therefore X(t) \sim geom(p), \ p = e^{-\lambda t}$$

$$Mean[X(t)] = 1/p = e^{\lambda t},$$

$$Variance[X(t)] = \frac{1-p}{p^2} = \frac{1-e^{-\lambda t}}{e^{-2\lambda t}}$$

(b) For Yule process,

$$p_n(t) = e^{-\beta t} (1 - e^{-\beta t})^{n-1}, \quad n \ge 1$$

$$\therefore pr\{X(U) = k\} = \int_{0}^{1} e^{-\beta u} (1 - e^{-\beta u})^{k-1} du$$

$$= \frac{1}{\beta} \int_{0}^{1} (1 - e^{-\beta u})^{k-1} \cdot \beta e^{-\beta u} du$$

$$= \frac{1}{\beta} \left[\frac{(1 - e^{-\beta u})^{k}}{k} \right]_{0}^{1}$$

$$= \frac{1}{\beta k} \left[(1 - e^{-\beta})^{k} \right]$$

:.
$$pr\{X(U) = k\} = \frac{p^k}{\beta k}, k = 1, 2, ... \text{ where } p = 1 - e^{-\beta}$$

Q3:[3+5]

(a)

For $T \sim \mathsf{Weibull}(\eta,\beta),$ the p.d.f. is

$$f(t) = \frac{\beta}{\eta} \left[\frac{t}{\eta} \right]^{\beta - 1} \exp \left[-\left(\frac{t}{\eta} \right)^{\beta} \right]$$
 and the Reliability function is $R(t) = \exp \left[-\left(\frac{t}{\eta} \right)^{\beta} \right]$

$$\therefore \lambda(t) = \frac{f(t)}{R(t)}$$

$$\therefore \lambda(t) = \frac{\beta}{\eta} \left[\frac{t}{\eta} \right]^{\beta - 1} \tag{1}$$

$$\therefore f(t) = \frac{\beta}{\eta} \left[\frac{t}{\eta} \right]^{\beta - 1} \exp \left[-\left(\frac{t}{\eta} \right)^{\beta} \right]$$

Let,
$$\alpha = \left(\frac{1}{\eta}\right)^{\beta} = \eta^{-\beta}$$

$$\Rightarrow f(t) = \alpha \beta t^{\beta-1} e^{-\alpha t^{\beta}}$$

The Mean,
$$\mu = \int_0^\infty t \ \alpha \beta \ t^{\beta-1} e^{-\alpha t^{\beta}} dt$$

Let,
$$u = \alpha t^{\beta}$$

$$\Rightarrow$$
 du= $\alpha\beta t^{\beta-1}dt$, $t = \left(\frac{u}{\alpha}\right)^{\frac{1}{\beta}}$

The Mean,
$$\mu = \int_0^\infty \left(\frac{u}{\alpha}\right)^{\frac{1}{\beta}} e^{-u} du$$

$$\mu = \alpha^{\frac{-1}{\beta}} \int_0^\infty (u)^{\frac{1}{\beta}} e^{-u} du$$

$$\mu = \alpha^{\frac{-1}{\beta}} \Gamma(1 + \frac{1}{\beta})$$

$$\therefore \mu = \eta \Gamma(1 + \frac{1}{\beta}), \ \eta = \alpha^{\frac{-1}{\beta}}$$
 (2)

$$R(t) = \exp \left[-\int_{0}^{t} \lambda(x) dx \right]$$

$$R(2) = \exp\left[-\int_{0}^{2} t^{3} dt\right]$$
$$= \exp\left[-\frac{t^{4}}{4}\right]_{0}^{2}$$
$$= e^{-4}$$
$$\approx 0.0183$$

ii)

$$Pr(0.4 < T < 1.4) = F(1.4) - F(0.4)$$

$$= R(0.4) - R(1.4)$$

$$= \exp[-t^4 / 4]_0^{0.4} - \exp[-t^4 / 4]_0^{1.4}$$

$$= \exp[(-1/4)(0.4)^4] - \exp[(-1/4)(1.4)^4]$$

$$= 0.61088$$

iii)

$$MTTF = \int_{0}^{\infty} R(t) dt$$

$$R(t) = \exp\left[-\int_0^t \lambda(x) dx\right]$$
$$= \exp\left[-\int_0^t x^3 dx\right]$$
$$= \exp\left[-\frac{t^4}{4}\right]$$

$$\Rightarrow MTTF = \int_0^\infty R(t)dt$$
$$= \int_0^\infty \exp(-\frac{1}{4}t^4)dt$$

Let
$$x = \frac{1}{4}t^4 \implies dt = (4x)^{-3/4}dx$$

⇒ MTTF=
$$4^{-3/4} \int_0^\infty e^{-x} x^{-3/4} dx$$

= $4^{-3/4} \Gamma(1/4)$
≈ 1.2818

Q4: [4+4]

(a)

$$\begin{split} & :: \Pr\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n}=i_{n}\right\} \\ & = \Pr\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}\right\}. \Pr\left\{X_{n}=i_{n} \left|X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}\right.\right\} \\ & = \Pr\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}\right\}. \Pr_{i_{n-1}i_{n}} \text{ Definition of Markov} \end{split}$$

By repeating this argument n-1 times

$$\therefore \Pr\left\{X_0 = i_0, X_1 = i_1, X_2 = i_2, \dots, X_n = i_n\right\}$$

$$= p_{i_0} P_{i_0 i_1} P_{i_1 i_2} \dots P_{i_{n-2} i_{n-1}} P_{i_{n-1} i_n} \text{ where } p_{i_0} = \Pr\left\{X_0 = i_0\right\} \text{ is obtained from the initial distribution of the process.}$$

(b)

i)

$$p_0 = pr(X_0 = 0) = 1$$

$$\Pr \left\{ X_0 = 0, X_1 = 0, X_2 = 0 \right\} = p_0 P_{00} P_{00}$$
$$= 1 \times (1 - \alpha) \times (1 - \alpha)$$
$$= (1 - \alpha)^2$$

ii)

$$\begin{split} &\Pr\left\{X_{0}=0,X_{1}=0,X_{2}=0\right\}+\Pr\left\{X_{0}=0,X_{1}=1,X_{2}=0\right\}\\ &=p_{0}P_{00}P_{00}+p_{0}P_{01}P_{10}\\ &=(1-\alpha)^{2}+\alpha^{2}\\ &=1-2\alpha+2\alpha^{2} \end{split}$$

Q5: [8]

The LP pb. is of form:

The canonical form:

$$\max 45x_1 + 80x_2$$
$$x_1 + 4x_2 + x_3 = 80$$
$$2x_1 + 3x_2 + x_4 = 90$$

where x_3 and x_4 are slack variables.

Let $x_1 = x_2 = 0 \implies \text{NBVs} = \{x_1, x_2\}$ and $\text{BVs} = \{x_3, x_4\}$

$$x_3 = 80 - x_1 - 4x_2$$

$$\Rightarrow x_4 = 90 - 2x_1 - 3x_2$$

$$z = 45x_1 + 80x_2$$

1st dictionary

Let $\ x_{\scriptscriptstyle 1}\ {
m be\ incoming\ variable}$ (it has a +ve coefficient In the equation for $\ z$)

Ratio test

$$x_3: \frac{80}{1} = 80, \quad x_4: \frac{90}{2} = 45$$

 $\therefore x_4 \rightarrow$ outgoing variable

$$\Rightarrow x_1 = 45 - 3 / 2 x_2 - 1 / 2 x_4$$

$$x_1 = 45 - 3 / 2 \ x_2 - 1 / 2 \ x_4$$

$$\Rightarrow x_3 = 35 - 5 / 2 \ x_2 + 1 / 2 \ x_4$$

$$z = 2025 + 12.5 \ x_2 - 22.5 \ x_4$$
 2nd dictionary

Ziid dictionary

Let x_2 be incoming variable (it has a +ve coefficient In the equation for z)

Ratio test

$$x_1: \frac{45}{3/2} = 30, \quad x_3: \frac{35}{5/2} = 14$$

 $\therefore x_3 \rightarrow \text{ outgoing variable}$

$$\Rightarrow x_2 = 14 - 2/5 x_3 + 1/5 x_4$$

$$x_1 = 24 + 3/5 \ x_3 - 4/5 \ x_4$$

$$\Rightarrow x_2 = 14 - 2/5 \ x_3 + 1/5 \ x_4$$

$$z = 2200 - 5 \ x_3 - 20 \ x_4$$
 3rd dictionary

Here, we have –ve coefficients for all variables in the z equation, so we should stop.

∴ The optimal solution is

$$x_1=24, \ x_2=14, \quad x_3=0, \ x_4=0 \ \ {\rm where} \ \ z=2200$$
 .: max $z=\$2200$