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ABSTRACT.

We investigate the problem of optimal investment and consumption of Merton in the case of
discrete markets in an infinite horizon. We suppose that there is frictions in the markets due to
loss in trading. These frictions are modeled through nonlinear penalty functions and the classical
transaction cost and liquidity models are included in this formulation. In this context, the solvency
region is defined taking into account this penalty function and every investigator have to maximize
his utility, that is derived from consumption, in this region. We give the dynamic programming of
the model and we prove the existence and uniqueness of the value function.

Key Words and phrases: Merton problem, discrete market, infinite horizon, market frictions,
after liquidation value, dynamic programming, value function.

*Corresponding author: King Saud University, College of Science, Department of Mathe-
matics, P.O. Box 2455, Riyadh 11451, Saudi Arabia. Tel.: +96614676308; Fax: +96614676512,
e-mail: schebbi@ksu.edu.sa.

Research supported by the NPSTI strategic technologies program in the Kingdom of Saudi
Arabia, project number 12-MAT2703-02.



1 Introduction

In a very known paper appeared in 1971, Merton developed and modeled the problem of optimal
investment and consumption in continuous time. Since it appear, this problem has been extensively
investigated in the literature and extended in many directions, we refeer to the book of Karatzas
and Shreve [9] for some extensions in this way. Recently, Chebbi and Soner in [1] consider the
model of Merton when there is frictions in the market due to loss in trading. This paper is a study
in this direction and the markets considered are discrete in infinite horizon.

In the literature, we can find several types of market friction. The first one that receive the
most attention is the proportional transaction costs, first introduced and studied in the context of
Merton problem by Magill and Constantinides [11] and later by Constantinides [2]. Recently,
another concept of friction has been introduced by Cetin, Jarrow and Protter [3] for an illiquid
market. Our concept of friction in this paper will be formulated through a convex penalty function
g in a discrete market considered in an infinite horizon. This formulation will included both the
function of proportional costs considered in [11] and the one considered for an illiquid market with
no bid and ask spread [3]. The discrete time formulation of Merton problem was firstly developed
by Jouini and Kallal [8] and in our context, the advantage of this type of formulation is that we
can give a uniform approach that cove both the two principal type of frictions, i.e. proportional
costs and illiquid marckets, while in continuous time one have to distinguish the case when g is
differentiable at the origin or not.

In section 2, we extend the model of Merton with friction studied in [1] to the case of an
infinite horizon. Using the penalty function, we give the dynamics of the cash and stock position.

In section 3, we study the optimal investment and the consumption problem of Merton. This
problem is formulated as an optimization problem in which every investor has to maximize his
expected utility function under a constraint condition defined by a solvency region. The utility
function is derived from consumptions and the solvency region is defined through a natural condi-
tion concerning the non negativeness of what we call the after liquidation value, when an investor
is forced to liquidate all stock positions. Then, we prove the dynamic programming of the model
and by using a fixed point approach, we deduce the existence and uniqueness of the value function.

2 The Model

We consider a discrete market model in an infinite horizon. We suppose that the market is with
a money market account and N risky assets and we assume that the money market account pays
a return of fraction r > 0 of the invested amount. The risky assets, called the stocks, provide a
random return of R = (Ry)x> with values in [—1,00)N. The returns are supposed to be identically
and independently distributed over time. We let u be the common probability measure of R;s,
which is supposed to be finite on RY. We consider the probability space (Q,.#,P) where Q =
(RM)* denotes the space of events (@ )i> such that for all k € N*, @y € RY. For k € N*, we
define the canonical mapping process By(®) = @, k > 1, @ € Q. We denote by %, = 6(Bs;s €
{1,2,...,k}) the o-field generated by the canonical map, which represents the information that the
investor has at any time k. We set Foo = 0 (Uren Zi), With Zp = {0,Q} is the trivial o-algebra.
Let IP the product probability measure given by

P({o € Q, o € Ay, k> 1}) = [ (A
i



Now, we let the return vector at time k given by Ri(®) = Bx(®) = ay, k € N*. Then R}s
are .Z;-measurable, hence R = (R;);> is an (R)N-valued, F-adapted process. The connection
between the stock process S = (Si)x>1, where S}; is the ith stock at time k, and the return process
R is simply given by

where Sf) is the initial stock value. Since R; > —1,Sisan (R*)N -valued .% -adapted process.

The portfolio position of the investor is an .#-adapted, R x (R*)"-valued process (x,y) and it has
the following interpretation,

x = (x)g>1 = process of money invested in the money market account at any time k.

y= (y}() x>1 = process of money invested in the i-th stock at any time k prior to the portfolio
adjustment.

For k > 1, let z = (zx)i>1 be the process of the number of shares of stock held by the investor at
time k prior to the portfolio adjustment. Hence, zj is .%#;_|-measurable and z in an .% -predictable
process with values in RY. Moreover,

In our model, we assume that the market is with friction since trading results in a loss is a
certain small percentage of the traded dollar amount:

of :=SiAZ =S} (1 —2), i=1,...,N, k>1. (2.1)

We thus suppose that there is a penalty function g : RY — [0,00), in the market which is
assumed to be convex with g(0) =0 and g > 0.
In this context, the dynamics for the cash position will be the following:

Xyt = (i — (0, 1) — g (o) —cx) (147), k>1, (2.2)

where the non-negative, .7 -adapted process c is the consumption of the investor, (-, -) denotes the
usually inner product in RV,
Specific examples of a loss function in the literature are

N . N _
gla) =Y Ale’l, or gla)=Y A(a')?,
i=1 i

where A/°s are given non-negative (small) constants. The first of the above example corresponds
to the classical example of the proportional costs [3, 6, 8, 11, 13]. The second, however, is a model
of illiquidity [3, 4, 7]. origin. The main difference between the two examples is the differentia-
bility at the origin. Indeed, a non-differentiability of g at the origin corresponds to a proportional
transaction costs, or equivalently the existence of a bid-ask spread in the market.

The dynamics of the y process is the classical one defined for £k > 1 by:



y;;+1 = yi + [Z;;+1S;<+1 —ZiSﬂ
= y;c JFS;; [ZZH *ZH +Z;'<+1 [S;cﬂ 7S§<]
~ oo, (%)
k
= it 0+ [Si(gi —2) + S Riy
= Vit o+ (0 + ) Ry
= (ita) (1+R). 2.3)

Notice that the dynamics of the state variables (x,y) in (2.2)-(2.3) are given only through the
process @ and not z. Hence, in whatever follows, we use the .% -adapted process « instead of z.
We also note that the mark-to-market value

N
o = x5+ (i 1) = xc+ Y 0%
i=1

satisfies the equation

W1 = O+t (o] Ry — o Tr—ci(1+7) — g(og)(1+7)
= a[l+r+m- (Rey1—r)] —cx(14r) —glog)(147),

where 7} := [ 4] /wy is the fraction of the mark-to-market value invested in the stock after the
portfolio adjustment. Indeed, this is the classical wealth equation when there is no friction, i.e,
when g = 0.

3 Solvency Region

It is well known that the optimal investment and consumptions type problem of Merton require a
lower bound on the wealth like variables, see [9]. Otherwise, one may easily obtain non intuitive
trivial results as consumption with no bound would be admissible. In this context, an appropriate
notion is to require the mark-to-market value of the portfolio to be non-negative. In our model of
markets with frictions, an admissibility type condition can be defined by taking into account the
penalty function.

For a portfolio position (x,y) € R x (RT)V, we define the cash value of the portfolio at any
time k by:

L(xg,yx) = %k +yx — g(o) and L = {(x,y) € Rx RV : L(x,y) > 0}, (3.1

and the after-liquidation value is defined simply as the cash value of the position after the
investor is forced to liquidate (i.e., sell or close) all stock positions. Due to the loss function
postulated in (2.2) this value differs from the mark-to-market value defined in the previous sub-
section. Indeed, using the idea behind (2.2), with z; = yi/Sk, zk+1 = 0, we obtain o = —y; and
the solvency condition is simply as follows:



Definition 1 A control process vV := (¢, &) consists of a non-negative, .F -adapted consumption
process ¢ and an RN -valued, .7 -adapted portfolio adjustment process o. We say that a control
process vV = (c, ) is admissible with initial position (x,y) € L, if the solution (xi,yi)k>1 corre-
sponding to (2.2)-(2.3) with initial data xy = x, yo =y and controls (c, ) satisfies

L(xk,yk) = X+ (i, 1) —g(=m) 20, = (xk,yk) €L, Vk>1,

P-almost surely. We denote by A(x,y) the set of all admissible controls.

In the general context, we simply define
U(x,y) == {(c,0) e R x RN ¢ L(xg,y) >0, P—a.s.}. (3.2)

We may rewrite the admissibility criterion using the sets U(x,y) as well. For future reference,
we record this simple connection,

(c,a) € Alx,y) <= (cx, o) € Ulxe,yn), Vhk>1, (3.3)
where (xg,y¢) is the solution of (2.2)-(2.3).

Lemma 1 Forany (x,y) € L, the admissible class of controls A(x,y)) (and also U(x,y)) is nonempty
and convex.

Proof.
To prove that A(x,y) # 0, take as a control process: ¢ =0, o = —y and o = 0 for all k > 1.
Then, the solution of (2.2)-(2.3) at time k > 1 is given by y; = 0 and

X = (x4, 1) —g(=y) (1 +r)~.
Then,
L(xe, k) = x = (x+ (1) —g(=3)) (1 + )¢ > 0,
since (x,y) € L is equivalent to x+ (y, 1) — g(—y)) > 0. So U(x, y) (resp. A(x,y)) is nonempty.

~ Now we want to show that A(x,y) is convex. Take (¢, a') € A(x',)), for i = 1,2, ie.
(ct, o) € U(xi,yt) for i=1,2 and k > 1. For A € [0,1], we note by & = Ac} + (1 —4)c? and
similarly 0y, X, . We have:

X+ — 8(a)

= Al +y)+(1=2)(% +y0) —g(%)
Ag(og)+(1—2)g(0f) — g( %)

0

L(%k,5k)

AVARLY

since g is convex and (x},yt) € L fori=1,2 and k > 1.

Now for § > 0and I C {1,...,N} define the set
Q%= (R <r—§, foricl, and R, > r+38, for j €1}

We provide a natural sufficient condition for U to be bounded.



Lemma 2 Suppose that for some 6 > 0:

u (951) >0, (3.4)

or every subset 1 C {1,... ,N}. ThenU(x,y) is a bounded subset of R* x RN for all (x,y) € L.
ry y

Proof. 1t is clear that if (¢,o) € U(x,y), then ¢ must be bounded by above. Now suppose that
there are (™, ™) € U(x,y) so that || tends to infinity. Considering a subsequence, we may
assume that all components of ™ converge (including the limit points £o0). First assume that
(o'™)! converges to plus infinity for some i. Set I to be set of indices for which the limit point is
plus infinity. Then, one can argue that on the set Qo1

L((x—a-T—gl@)—c)(1+n),(+a)(1+R1))

converges to minus infinity. Hence a contradiction to the fact that (¢™, &™) € U(x,y) and thus the
above expression is non-negative with probability one.
Now, if (™)’ converges to minus infinity for some i. We set I to be the complement of the
set on which the limit point is minus infinity and argue similarly.
O

4 Investment-consumption problem

In this model, we consider the classical problem of optimal investment and consumption of Merton
[12, 9]. In our context of an infinite horizon, we assume that the investor derives utility from
consumption. For a given initial position (x,y) and an admissible process v = (¢, &) € A(x,y), the
utility is given by:

J(x,y,c,0) :=E , 4.1)

i P U (cr)
k=0

where U : RT — R, is a classical utility function, i.e., a concave, non-decreasing function satisfying
the Inada condition and the given constant p € (0,1) is the impatience parameter. Then, the
problem is to maximize the total expected utility function J over all admissible controls.

Remark 1 We recall that in the finite horizon case, the utility considered in [1] for a given initial
position (x,y), an horizon t and an admissible process v = (c,a) € A(x,y) is the following:

J(x,y,c,a):=E

-1
Z P U (cr) +th(L(x,7y,))1 )
k=0

where U is as U. It is important to notice that when t is large, the second member of this
utility function goes to 0. Indeed, for an admissible control (c,a), x; and y, are controllable,
ie. (x;,y;) C A with A compact set, then L(x,,y,) C L(A). Since U is an increasing function,
U(L(x:,y,)) C U(A), hence for p € (0,1), lim; .. p'O (L(x;,y:)) = O.

Lemma 3 For any admissible control (c, ), the utility function J is well defined and continuous.



Proof. It is clear that if (c,@) € U(x,y), then ¢ must be bounded by above, i.e., there is M € R
such that ¢ < M. Then the function J is well defined since:
- UM
ZpkU(ck) < v P—a.s.
k=0 I-p
For the continuity of J, suppose that a sequence (x",y") converges to (x,y) P-almost surely,
then:
~+oo
[Ty = 30e))| <ELY. pM|U(ex) = U ()]
k=0
Let € > 0, be given. There exists T such that for every n

o0

0<E[ Y pu) <= P—as.
k=T+1 3
and
fy €
0< E[kZ;HpkU(ck)] < 3 P—a.s
Since, we have Vn, Vk, 0 < ¢y <M, 0< c{ <M P—a.s.
Then,
T
n .n k n 2
I ") =Jy)| <ELY. p*lU(er) = U ()] + 3¢ P-as
k=0

Since, the function U is continuous, there exists an integer N such that, for every n > N, the first
term of the second member of the previous inequality is less than £ P-almost surely. We have

proved that J is continuous.

In what follows, the resulting optimal value is called the value function and is given by:

vioy) = sup - Jlxyc ).
(c,0)€A(xy)
However, it is well known that even with restrictions (¢, &) € A(x,y), the value function may
become infinite. The reason emanates from the market itself and is due to the possibility of arbi-
trage in the market. In this paper, we simply assume that

V(x,y) <e,  VY(xy) €L, 4.2)
recall that I is defined in (3.1).
The value function has the following simple but important property:

Proposition 1 The value function V (-,-) is jointly concave and continuous on L.

Proof. Note firstly that following the previous lemma, the set of admissible controls A(x,y) (resp.
U(x,y) is convex. Now since U is concave, the concavity of the value function follows immedi-

ately and then, we conclude the continuity of V(-,-) on L.
O

We continue by proving the dynamic programming. Recall that the set of admissible controls
is given in (3.3).



Proposition 2 (Dynamic Programming) B
Assume that (3.4) is satisfied. Then for every (x,y) € L, the value function satisfies the following
equation:

v(x,y) = sup E[U(C)+p V(XI,YI)L 4.3)
(c,)€U(x,y)

where
(x1,y1) = ((xf o-T—gla)—c)(1+7r),y+a)(l +R1)) .

Proof. or every € > 0, there is (c, ) € A(x,y) so that

Ulco)+p (i pk‘IU(ck)ﬂ : (4.4)
k=1

Since Fy = o(Ry,...,R;), and (c, @) are F-adapted, for each k > 1, there are Borel measurable
functions
(Cr,Ap) : (RMF 5 RT xRV,
so that
(Ck, (xk)(co) = (Ck7Ak)(a)1 yeeny (Dk).

For fix @ € RN and define
(Cr, ) (@) := (Cry1,Ak11) (@D, @15 ..., @), k>0.

Then, it is clear that
(¢ a) € Alxi(@),y1(@)), 4.5)

where =
(x1,y1)(@) = (x1 — 0 - 1= g(ow) —co)(1+r), (y1 + ) (1+Ri (@))).
Then, we directly verify that

E <i P U (er)
k=1

]Fl) ((Z)) = J(xl((f)),y]((f)),é,a).

Note that the right hand side of the above also depends on the initial controls (cp, ). Also, the
controls (¢, &) depends on @. But we suppressed this dependences for notational simplicity.
By (4.4), we now have the following.

vix,y)—e < E

= E[U(C())—‘r.pJ(xl((D)Jl(d))vE?d)]
= U<CO)+/RN J(xr(
< E[U(co)+pv(x1,y1)],

where in the final inequality we used (4.5). Since € > 0 is arbitrary and (cg, &) € U(x,y), this
proves one of inequality (<) in (4.3).



To prove the converse, we will use the fact that for each (x,y) € L, U(x,y) is a bounded subset
of RT x RV Then, the existence of the value function arises from the fact that the initial optimiza-
tion problem turns out to be a maximization problem of a continuous function on a compact set for
the product topology. Since U and v are concave, hence continuous and U is compact under the
above assumption, we conclude that there exists (c*,@*) € U(x, y) such that for every (x},y}) € L,

EU() +pv(iy)] = sup - E[U(c) +pvlx,yi)] -
(c.o)eU(xy)

We then directly argue that

E[U(c*>+plipklv<cz>1

E[U(c*) +pJ(x},y},¢", a%)] — €
E[U(c") +vix,y1)] = 2e.

J(x,y,¢*, 00)

(AVARVS

We now use the choice of (¢*,a*) € U(x,y) and the inequality of v > J to arrive at

)+ py(ai )] - 26

v(x,y) (c*
+pv(xi,y1)] —3e.

sup  E[U(c)
(c;0)€U(xy)

(A\VANYS

Now we can prove the existence and uniqueness of the value function:

Theorem 1 Assume that (3.4) is satisfied, then the value function is the unique continuous solu-
tion of equation (4.3)

Proof. First of all, let us begin by showing that V is a fixed point of a contraction mapping in
the arbitrary Banach space of bounded functions. For this purpose, we denote by B(U(x,y)) the
space of all bounded functions on U(x,y). This space will be endowed with the sup-norm ||A|| =
SUP(¢,a)cl(xy) [1(X,,¢, @)|, where h € B(U(x,y)) and (x,y) € L. We denote by T the operator

defined for all 2 € B(U(x,y)) and all (x,y) € L by:
Th(x,y)= sup  E[U(c)+ ph(x1,y1)].
(c;0)€U(x,y)
Let us check that 7 maps (B(U(x,y)) into B(U(x,y)):

IThGey) = | sup  E[U(c)+phlxiyi)]l
(c;)€U(xy)

< U(e)+p sup  Ela(xr,y)]
(c,a)€U(x,y)

< Ule)+plnl.-

We claim that T is a p-contraction mapping. For this, we can see that T satisfied the Blackwell
theorem (see the book of Le Van and Dana [10]):

9



o If h < g, then U(c)+ ph(x1,y1) <U(c)+ ph(x1,y;) and therefore Th < Tg.
* There exists o €]0, 1], take o = p such that T (h+a) < Th+aa, fora € R*.

By Banach fixed point theorem for contraction mappings, there exists a unique fixed point of
T in B(U(x,y)) which is V(x,y).

O

Remark 2 One of the well-known properties of contraction mappings is that the fixed point is the
limit of the sequence (T"h) when n converges to infinity, where h is any element of B(U(x,y)).
More precisely, we have, limy,_. || T"h — v|| = 0. In particular, we have:

V(x,y) € L,V(x,y) = lim, e T"h(x,y).

Remark 3 Assume that the utility function U takes non-negative values. Then we can show that
the value function of (4.3) satisfies the transversality condition:

V(e,@) € Ulx,y), tim pTv(ar,yr) =0.

Indeed, let (c, &) be in A(x,y), since U is a bounded subset of R* x RN and the utility function
U is non-negative, we have:

=

(M)

Sup J(x,y,c,a) § - -
(e,@)€A(xy) l—p

Hence,
VT, lim p”v(xr,yr) =0.
T—o0

Remark 4 By using the property obtained in Remark 3, we can show the uniqueness of the value
function differently. Indeed, let V be a continuous solution of the dynamic programming equation
(4.3), we have:

VT: V(xy) =U(co) +pU(c1) +p*Ulca) - +p " U(er—1) +p"V(xr,yr).
Since pTV (xr,yr) — 0, hence
Joo
Vixy) = I;)PkU(Ck) < v(x,).
To prove the opposite inequality, let (c, @) be any admissible control in A(x,y), then
(ck,on) € Ul i), k=1,

We use the construction given in Proposition 2 to conclude that:

V(xkayk) 2 E[U(Ck)‘f'PV(kaaka) ‘ Fk]7 k:()v 1)"'7T_ 1.

10



We iterate this inequality, we obtain

[U(co) +pV (x1,31)]
[U(co) +PpE[U(c1) +pV (x2,y2) | Fi]]
[U(co)+pU(c1) +p*V (x2,2)]

T—1
p*U () +p"V (x7,y7)
0

V(x,y)

(AVARAYS

E
E
E

=

k=
Since limy e pTv(x7,y7) = 0 and (c, @) € A(x,y) is arbitrary, the above implies

Vix,y)> sup  J(x,y,c,a) =v(x,y).
(c,0)€A(x,y)

11
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