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CHAPTER 1: Getting Acquainted with Biostatistics


1.1 Introduction:
The course "Biostatistics" (STAT-145) is about information; how it is obtained, how it is analyzed, and how it is interpreted.
The objective of the course is to learn:
(1)	How to organize, summarize, and describe data. (Descriptive Statistics)
(2)	How to reach decisions about a large body of data by examine only a small part of the data.
(Inferential Statistics)


1.2 Some Basic Concepts:


Data:
Data is the raw material of statistics. There are two types of data:
(1)    Quantitative data
(numbers: weights, ages, …). (2)    Qualitative data
(words or attributes: nationalities, occupations, …).


Statistics:
Statistics is the field of study concerned with:
(1)	The   collection,   organization,   summarization,   and analysis of data. (Descriptive Statistics)
(2)	The  drawing  of  inferences  and  conclusions  about  a body of data (population) when only a part of the data (sample) is observed. (Inferential Statistics)
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Sources of Data:
1. Routinely kept records.
2. Surveys.
3. Experiments.
4. External sources.  (published reports, data bank, …)


Population:
- A population is the largest collection of entities (elements or individuals) in which we are interested at a particular time and about which we want to draw some conclusions.
- When we take a measurement of some variable on each of the entities in a population, we generate a population of values of that variable.
- Example: If we are interested in the weights of students enrolled in the college of engineering at KSU, then our population consists of the weights of all of these students, and our variable of interest is the weight.


Population Size (N):
The number of elements in the population is called the population size and is denoted by N.


Sample:
- A sample is a part of a population.
- From the population, we select various elements on which
we collect our data. This part of the population on which we
collect data is called the sample.
- Example: Suppose that we are interested in studying the characteristics of the weights of the students enrolled in the college of engineering at KSU. If we randomly select 50 students among the students of the college of engineering at KSU and measure their weights, then the weights of these
50 students form our sample.


Sample Size (n):
The number of elements in the sample is called the sample

size and is denoted by n.


Variables:
The characteristic to be measured on the elements is called variable. The value of the variable varies from element to element.
Example of Variables:
(1) No. of patients      (2) Height
(3) Sex                        (4) Educational Level


Types of Variables:
(1) Quantitative Variables:
A quantitative variable is a characteristic that can be measured. The values of a quantitative variable are numbers indicating how much or how many of something.
Examples:
(i) Family Size            (ii) No. of patients
(iii) Weight                 (iv) height
Types of Quantitative Variables:


(a) Discrete Variables:
There are jumps or gaps between the values. Examples: - Family size (x = 1, 2, 3, … )
- Number of patients (x = 0, 1, 2, 3, … )


(b) Continuous Variables:
There are no gaps between the values.
A continuous variable can have any value within a certain interval of values.
Examples: - Height (140 < x < 190)
- Blood sugar level (10 < x < 15)


(2) Qualitative Variables:
The values of a qualitative variable are words or attributes indicating to which category an element belong.
Examples:

- Blood type                - Nationality
- Students Grades       - Educational level
Types of Qualitative Variables:


(a) Nominal Qualitative Variables:
A nominal variable classifies the observations into various mutually exclusive and collectively non-ranked categories. The
values of a nominal variable are names or attributes that can not
be ordered or sorted or ranked.
Examples: - Blood type (O, AB, A, B)
- Nationality (Saudi, Egyptian, British, …)
- Sex (male, female)


(b) Ordinal Qualitative Variables:
An ordinal variable classifies the observations into various mutually  exclusive  and  collectively  ranked  categories.  The values of an ordinal variable are categories that can be ordered, sorted, or ranked by some criterion.
Examples: - Educational level (elementary, intermediate, …)
- Students grade (A, B, C, D, F)
- Military rank






















1.4 Sampling and Statistical Inference:
There are several types of sampling techniques, some of which are:

(1) Simple Random Sampling:
If a sample of size (n) is selected from a population of size (N) in such a way that each element in the population has the same  chance  to  be  selected,  the  sample  is  called  a  simple random sample.


(2) Stratified Random Sampling:
In this type of sampling, the elements of the population are classified into several homogenous groups (strata). From each group,  an  independent  simple  random  sample  is  drawn.  The
sample  resulting  from  combining  these  samples  is  called  a
stratified random Sample.

CHAPTER 2: Strategies for Understanding the Meaning of
Data:


2.1 Introduction:
In this chapter, we learn several techniques for organizing and summarizing data so that we may more easily determine what information they contain. Summarization techniques involve:
- frequency distributions
- descriptive measures


2.2 The Ordered Array:
A first step in organizing data is the preparation of an ordered array.
An ordered array is a listing  of the values in order of magnitude from the smallest to the largest value.
Example:
The following values represent a list of ages of subjects who participate in a study on smoking cessation:
55   46   58   54   52   69  40  65  53  58
The ordered array is:
40   46   52   53   54   55  58  58  65  69


2.3 Grouped Data: The Frequency Distribution:
To group a set of observations, we select a suitable set of contiguous, non-overlapping intervals such that each value in the set of observations can be placed in one, and only one, of the intervals. These intervals are called "class intervals".

Example:
The  following  table  gives  the  hemoglobin  level  (g/dl)  of  a sample of 50 men.

	17.0
	17.7
	15.9
	15.2
	16.2
	17.1
	15.7
	17.3
	13.5
	16.3

	14.6
	15.8
	15.3
	16.4
	13.7
	16.2
	16.4
	16.1
	17.0
	15.9

	14.0
	16.2
	16.4
	14.9
	17.8
	16.1
	15.5
	18.3
	15.8
	16.7

	15.9
	15.3
	13.9
	16.8
	15.9
	16.3
	17.4
	15.0
	17.5
	16.1

	14.2
	16.1
	15.7
	15.1
	17.4
	16.5
	14.4
	16.3
	17.3
	15.8


We  wish  to  summarize  these  data  using  the  following  class

intervals:
13.0 – 13.9 ,      14.0 – 14.9  ,     15.0 – 15.9  ,
16.0 – 16.9 ,      17.0 – 17.9  ,     18.0 – 18.9
Solution:
Variable = X = hemoglobin level (continuous, quantitative) Sample size = n = 50
Max= 18.3
Min= 13.5


	Class Interval
	Tally
	Frequency

	13.0 – 13.9
14.0 – 14.9
15.0 – 15.9
16.0 – 16.9
17.0 – 17.9
18.0 – 18.9
	|||
||||
||||  ||||  ||||
||||  ||||  ||||  |
||||  ||||
|
	3
5
15
16
10
1




 (
Class Interval
(Hemog
l
ob
i
n 
l
e
vel)
Frequency
(no.
 
of
 
men)
13.0 – 13.9
14.0 – 14.9
15.0 – 15.9
16.0 – 16.9
17.0 – 17.9
18.0 – 18.9
3
5
15
16
10
1
Total
n
=50
)The grouped frequency distribution for the hemoglobin level of the 50 men is:


















Notes:
1. Minimum value ∈ first interval.
2. Maximum value ∈ last interval.
3. The intervals are not overlapped.
4. Each value belongs to one, and only one, interval.
5. Total of the frequencies = the sample size = n

Mid-Points of Class Intervals:
•  Mid-point  =

upper

limit +
2

lower

limit


True Class Intervals:
•  d = gap between class intervals
•  d = lower limit – upper limit of the preceding class interval
•  true upper limit = upper limit +d/2
•  true lower limit = lower limit - d/2


	Class Interval
	True Class Interval
	Mid-point
	Frequency

	13.0 – 13.9
14.0 – 14.9
15.0 – 15.9
16.0 – 16.9
17.0 – 17.9
18.0 – 18.9
	12.95 - 13.95
13.95 - 14.95
14.95 - 15.95
15.95 - 16.95
16.95 - 17.95
17.95 – 18.95
	13.45
14.45
15.45
16.45
17.45
18.45
	3
5
15
16
10
1




For example:
Mid-point of the 1st interval = (13.0+13.9)/2 = 13.45
:
Mid-point of the last interval = (18.0+18.9)/2 = 18.45


Note:
(1)  Mid-point  of  a  class  interval  is  considered  as  a  typical
(approximated) value for all values in that class interval. For example: approximately we may say that:
there are 3 observations with the value of 13.45 there are 5 observations with the value of 14.45
:
there are 1 observation with the value of 18.45


(2) There are no gaps between true class intervals. The end- point (true upper limit) of each true class interval equals to the start-point (true lower limit) of the following true class interval.

Cumulative frequency:
Cumulative frequency of the 1st class interval = frequency. Cumulative frequency of a class interval
= frequency + cumulative frequency of the preceding class interval


Relative frequency and Percentage frequency:
Relative frequency = frequency/n
Percentage frequency = Relative frequency × 100%


	Class
Interval
	Frequency
	Cumulative
Frequency
	Relative
Frequency
	Cumulative
Relative
Frequency
	Percentage
Frequency
	Cumulative
Percentage
Frequency

	13.0 – 13.9
14.0 – 14.9
15.0 – 15.9
16.0 – 16.9
17.0 – 17.9
18.0 – 18.9
	3
5
15
16
10
1
	3
8
23
39
49
50
	0.06
0.10
0.30
0.32
0.20
0.02
	0.06
0.16
0.46
0.78
0.98
1.00
	6%
10%
30%
32%
20%
2%
	6%
16%
46%
78%
98%
100%




From frequencies:
The number of people whose hemoglobin levels are between
17.0 and 17.9 = 10


From cumulative frequencies:
The number of people whose hemoglobin levels are less than or equal to 15.9 = 23
The number of people whose hemoglobin levels are less than or equal to 17.9 = 49


From percentage frequencies:
The percentage of people whose hemoglobin levels are between
17.0 and 17.9 = 20%


From cumulative percentage frequencies:
The percentage of people whose hemoglobin levels are less than or equal to 14.9 = 16%
The percentage of people whose hemoglobin levels are less than or equal to 16.9 = 78%
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Displaying Grouped Frequency Distributions:
For representing frequency (or relative frequency or percentage frequency) distributions, we may use one of the following graphs:
• The Histogram
• The Frequency Polygon
Example:
 (
True
 
Class I
n
t
e
rv
a
l
(age)
Frequency
(No.
 
of
 
women)
Cumulative
Frequency
Mid-points
14.5 - 19.5
19.5 - 24.5
24.5 - 29.5
29.5 - 34.5
34.5 - 39.5
39.5 - 44.5
8
16
32
28
12
4
8
24
56
84
96
100
17
22
27
32
37
42
Total
n
=100
)Consider the following frequency distribution of the ages of 100 women.

















Width of the interval:
W =true upper limit – true lower limit = 19.5 − 14.5 = 5


(1) Histogram:
Organizing and Displaying Data using Histogram:




(2) The Frequency Polygon:
Organizing and Displaying Data using Polygon:


Polygon (Open)



Polygon (Closed)





 (
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2.4 Descriptive Statistics: Measures of Central Tendency:
(Measures of location)
In the last section we summarize the data using frequency distributions (tables and figures). In this section, we will introduce the concept of summarization of the data by means of
a single number called "a descriptive measure".


A descriptive measure computed from the values of a sample is called a "statistic".


A descriptive measure computed from the values of a population is called a "parameter".


For the variable of interest there are: (1) "N" population values. (2) "n" sample of values.


• Let

X 1 , X 2 , K , X N

be  the  population  values  (in  general,
they are unknown) of the variable of interest. The population size = N


• Let

x1 , x2 , K , xn

be the sample values (these values are
known).
The sample size = n.


(i)     A parameter is a measure (or number) obtained from the
population values:

X1 , X 2 , K , X N   .
-   Values of the parameters are unknown in general.
-   We are interested to know true values of the parameters.


(ii)    A statistic is a measure (or number) obtained from the
sample values:

x1 , x2 ,K , xn   .
-   Values of statistics are known in general.
-	Since  parameters  are  unknown, statistics  are  used  to approximate (estimate) parameters.

Measures of Central Tendency: (or measures of location):
The most commonly used measures of central tendency are: the mean – the median – the mode.
• The values of a variable often tend to be concentrated
around the center of the data.
• The  center  of  the  data  can  be  determined  by  the
measures of central tendency.
• A measure of central tendency is considered to be a
typical (or a representative) value of the set of data as a
whole.


Mean:
(1) The Population mean ( µ ):
 (
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If      X1 , X 2 , K , X N

are  the  population  values,  then  the
population mean is:

 X   + X   + L + X 	



N
∑ X i  
µ =    1              2
N

N   = i =1
N

(unit)
• The population mean

µ is a parameter   (it is usually
unknown, and we are interested to know its value)


(2) The Sample mean ( x ):


is:

If x1 , x2 , K , xn

are the sample values, then the sample mean


n
∑ x
x  + x   + L + x  

          i 
x =   1         2
n

n   = i =1
n

(unit)
• The sample mean x

is a statistic (it is known – we can
calculate it from the sample).
•  The sample mean x

is used to approximate (estimate)
the population mean µ .


Example:
Suppose that we have a population of 5 population values:

X 1  = 41,

X 2  = 30 ,

X 3  = 35,

X 4  = 22,

X 5  = 27.

(N=5)
Suppose that we randomly select a sample of size 3, and the sample values we obtained are:


Then:

x1  = 30,

x2  = 35,

x3  = 27.

(n=3)
The population mean is:
µ =  41 + 30 + 35 + 22 + 27 = 155 = 31



(unit)
5                        5
The sample mean is:
x = 30 + 35 + 27 = 92 = 30.67


(unit)
3              3
Notice that

x = 30.67

is approximately equals to

µ = 31 .


Note: The unit of the mean is the same as the unit of the data.


Advantages and disadvantages of the mean:
Advantages:
• Simplicity:
compute.

The  mean  is  easily  understood  and  easy  to
• Uniqueness: There is one and only one mean
set of data.

for a given
• The mean takes into account all values of the data.
Disadvantages:
• Extreme values have an influence on the mean. Therefore,
the mean may be distorted by extreme values.
For example:
	Sample
	Data
	mean

	A
	2   4    5    7     7    10
	5.83

	B
	2   4    5    7     7    100
	20.83


• The mean can only be found for quantitative variables.


Median:
The median of a finite set of



numbers is that value which
divides the ordered array into two equal parts. The numbers in the  first  part  are  less  than  or  equal  to  the  median  and  the numbers in the second part are greater than or equal to the

median.












Notice that:
50% (or less) of the data is ≤  Median
50% (or less) of the data is ≥  Median

Calculating the Median:
Let

x1 , x2 ,K , x n

be the sample values. The sample size
(n) can be odd or even.
• First we order the sample to obtain the ordered array.
• Suppose that the ordered array is:
y1 , y2 ,K, yn
• We compute the rank of the middle value (s):

rank

=  n + 1
2


• If the sample size (n) is an odd number, there is only one
value in the middle, and the rank will be an integer:

rank

n + 1
 (
=
 
m
)=    2                  (m is integer)
The median is the middle value of the  ordered  observations, which is:
Median =

ym .




• If the

sample size (n) is an even number, there are two
values in the middle, and the rank will be an integer plus
0.5:

rank

=  n + 1 = m + 0.5
2
Therefore, the ranks of the middle values are (m) and (m+1). The median is the mean (average) of the two middle values of the ordered observations:
 ym + ym+1
Median =         2       .





Example (odd number):
Find the median for the sample values: 10, 54, 21, 38, 53.
Solution:
.n = 5  (odd number)
There is only one value in the middle.




 (
10
2
1
38
(
m
iddle value)
53
54
1
2
3 (m)
4
5
) (
The rank of the mi
ddle val
ue is:
ran
k
 
=
 
 
n
 
+
 
1
 
=  
5
 
+
1
 
= 3.
(m=3)
)2           2
Ordered set       →


Rank (or order) →


The median =38  (unit)


Example (even number):
Find the median for the sample values: 10, 35, 41, 16, 20, 32
Solution:
.n = 6 (even number)
There are two values in the middle. The rank is:


rank

=  n +1 = 6 +1


= 3.5 = 3 + 0.5 = m+0.5     (m=3)
2         2
Therefore, the ranks of the middle values are:
.m = 3  and   m+1 = 4
 (
1
0
1
6
2
0
3
2
3
5
4
1
1
2
3 (m)
4 (m+1)
5
6
)Ordered set       →
Rank (or order) →


The middle values are 20 and 32.

The median =

= 20 + 32 = 52 = 26


(unit)
2          2


Note: The unit of the median is the same as the unit of the data.


Advantages and disadvantages of the median:
Advantages:
• Simplicity: The median is easily understood and easy to
compute.
• Uniqueness: There is only one median for a given set of
data.
• The median is not as drastically affected by extreme values
as is the mean. (i.e., the median is not affected too much
 (
Sample
Data
median
A
9  
 
4   
 
5   
 
9    
 
2   
 
10
7
B
9  
 
4   
 
5   
 
9    
 
2   
 
100
7
)by extreme values). For example:






Disadvantages:
• The median does not take into account all values of the
sample.
• In general, the median can only be found for quantitative
variables.  However,  in  some  cases,  the  median  can  be
found for ordinal qualitative variables.


Mode:
The mode of a set of values is that value which occurs most frequently (i.e., with the highest frequency).

• If all values are different or have the same frequencies,
there will be no mode.
• A set of data may have more than one mode.


Example:
	Data set
	Type
	Mode(s)

	26, 25, 25, 34
	Quantitative
	25

	3, 7, 12, 6, 19
	Quantitative
	No mode

	3, 3, 7, 7, 12, 12, 6, 6, 19, 19
	Quantitative
	No mode

	3, 3, 12, 6, 8, 8
	Quantitative
	3 and 8

	B C  A  B  B  B C B  B
	Qualitative
	B

	B C  A  B  A  B  C  A  C
	Qualitative
	No mode

	B C  A  B  B  C  B C  C
	Qualitative
	B and C




Note: The unit of the mode is the same as the unit of the data.


Advantages and disadvantages of the mode:
Advantages:
 (
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• Simplicity:  the  mode
compute..

is  easily  understood  and  easy  to
• The mode is not as drastically affected by extreme values
as is the mean. (i.e., the mode is not affected too much by
 (
Sample
Data
Mode
A
7  
 
4   
 
5   
 
7    
 
2   
 
10
7
B
7  
 
4   
 
5   
 
7    
 
2   
 
100
7
)extreme values). For example:






• The  mode  may  be  found  for  both  quantitative  and
qualitative variables.
Disadvantages:
• The mode is not a “good”

measure of location, because it
depends on a few values of the data.
• The mode does not take into account all values of the
sample.
• There might be no mode for a data set.
• There might be more than one mode for a data set.

2.6 Descriptive Statistics: Measures of Dispersion
(Measures of Variation):
The dispersion (variation) of a set of observations refers to the variety that they exhibit. A measure of dispersion conveys information regarding the amount of variability present in a set
of data. There are several measures of dispersion, some of which
are: Range, Variance, Standard Deviation, and Coefficient of
Variation.
The variation or dispersion in a set of values refers to how spread out the values is from each other.
• The dispersion (variation) is small when the values are
close together.
• There is no dispersion (no variation) if the values are the
same.































The Range:
The  Range  is  the  difference  between  the  largest  value
(Max) and the smallest value (Min).
Range (R) = Max − Min
Example:
Find the range for the sample values:  26, 25, 35, 27, 29, 29.

Solution:
.max = 35
.min = 25
Range (R) = 35 − 25 = 10    (unit)


Notes:
1. The unit of the range is the same as the unit of the data.
2. The usefulness of the range is limited. The range is





a poor
measure of the dispersion because it only takes into account two
of  the  values;  however, applications.

it  plays  a  significant  role  in  many


The Variance:
The  variance  is  one  of  the  most  important  measures  of dispersion.
The variance is a measure that uses the mean as a point of reference.
• The variance of the data is small when the observations are
close to the mean.
• The variance of the data is large when the observations are
spread out from the mean.
• The variance of the data is zero (no variation) when all
observations  have  the  same  value  (concentrated  at  the
mean).


Deviations of sample values from the sample mean:

Let

x1 , x2 ,K, xn

be the sample values, and  x


be the sample
mean.
The deviation of the value xi



from the sample mean



x is:



The squared deviation is:

xi − x
( xi −

x ) 2
The sum of squared deviations is:

n                    	
∑( xi −

x ) 2
i=1
The following graph shows the squared deviations of the values
from their mean:

















(1)

The Population Variance σ2 :
(Variance computed from the population)
Let

X1 , X 2 , K , X N

be  the  population  values.  The  population
variance (σ2) is defined by:
N
 (
σ 
 
=
)∑(X i  − µ )
2          i =1 	
 (
2
)N
(X 1 − µ ) + (X   − µ ) + L + (X    − µ )                  2
2                              2
=                          2
N
N
∑ X i

2
N                              (unit)
where,

µ =  i =1 	
N

is  the  population  mean,  and  (N)    is  the
population size. Notes:
• σ 2

is  a  parameter  because  it  is  obtained  from  the
population values (it is unknown in general).
• σ 2  ≥ 0

(2)    The Sample Variance S2:
(Variance computed from the sample)
 (
n
)Let

x1 , x2

,K, x   be the sample values. The sample variance (S2) is
defined by:

n                   	
∑( xi

− x) 2
S 2  =   i =1 	
n −1
2                             2                                         2
=  ( x1  − x)   + ( x2  − x)   + L + ( xn  − x) 	
n −1
n


(unit ) 2


where

Notes:

    ∑ xi
x =    i =1           is the sample mean, and (n) is the sample size.
n
• S2  is a statistic because it is obtained from the sample
values (it is known).
• S2 is used to approximate (estimate) σ 2 .
•  S 2  ≥ 0
•  S 2  = 0

⇔   all observation have the same value
⇔   there is no dispersion (no variation)


Example:
We want to compute the sample variance of the following sample values: 10, 21, 33, 53, 54.
Solution:
n=5
n
   ∑ xi
x =  i =1        =

5
∑ xi
 i =1        = 10 + 21 + 33 + 53 + 54 = 171 = 34.2
n           5                       5                      5
n                                     5
∑ (xi

− x )2

∑ (xi

− 34.2)2
S 2   =   i =1                           =   i =1 	


S 2  =

n − 1
(10 − 34.2)2

5 − 1
+ (21 − 34.2)2

+ (33 − 34.2)2
4

+ (53 − 34.2)2

+ (54 − 34.2)2
= 1506.8 = 376.7
4


(unit) 2
Another Method for calculating sample variance:

 (
x
i
(
x
 
 
−
 
x
)
 
=
 
(
x
 
 
−
 
34
.
2
)
(
x
 
 
−
 
x
 
)
2
 
 
=
 
(
x
 
 
−
 
3
4
.
2
)
2
10
-24.2
585.64
21
-13.2
174.24
)i                           i                                     i                             i


i                           i                                     i                             i






5
 (
x
i
(
x
 
 
−
 
x
)
 
=
 
(
x
 
 
−
 
34
.
2
)
(
x
 
 
−
 
x
 
)
2
 
 
=
 
(
x
 
 
−
 
3
4
.
2
)
2
33
-1.2
1.44
53
18.8
353.44
54
19.8
392.04
5
∑
 
x
i 
 
=
 
171
i
 
=
1
∑
 
(  
 
−  
 
)
=
i
 
=
1
(       
 
)
) (
2
)xi       x     0

∑ xi  − x

= 1506.8


   ∑ xi              171
x =    i =1           ==        = 34.2



and



S 2  = 1506.8 == 376.7
5           5                                     4


Standard Deviation:
The  variance  represents  squared  units,  therefore,  is  not
appropriate

measure

of dispersion when we

wish to express the
concept of dispersion in terms of the original unit.
• The standard deviation is another measure of dispersion.
• The standard deviation is the square root of the variance.
• The standard deviation is expressed in the original unit of
the data.


(1) Population standard deviation is:

σ =   σ 2

(unit)


(2) Sample standard deviation is: S =    S 2

(unit)

n                   	
∑( xi

− x) 2



Example:

S =     i =1 	
n −1
For the previous example, the sample standard deviation is
S =   S 2   =

376.7 = 19.41

(unit)


Coefficient of Variation (C.V.):
• The  variance  and  the  standard  deviation  are  useful  as
measures of variation of the values of a single variable for
a single population.
• If we want to compare the variation of two variables we
cannot use the variance or the standard deviation because:

1. The variables might have different units.
2. The variables might have different means.
• We need a measure of the relative variation

that will not
depend on either the units or on how large the values are. This measure is the coefficient of variation (C.V.).
• The coefficient of variation is defined by:
S
C.V. =

×100%
x
• The C.V. is free of unit (unit-less).
• To compare the variability of two sets of data (i.e., to
determine  which  set  is  more  variable),  we  need  to
calculate the following quantities:
	
	Mean
	Standard deviation
	C.V.

	st
1  data set
	x1
	S1
	C.V  =  S1 100%
1        x
1

	2nd data set
	x2
	S 2
	C.V   =  S 2 100%
2         x
2


• The  data  set  with  the  larger  value  of  CV  has  larger
variation.
• The relative variability of the 1st data set is larger than the
relative variability of the 2nd
vice versa).


Example:
Suppose we have two data sets:

data set if  C.V1> C.V2  (and
1st data set:

x1  = 66 kg,

S1 =

4.5 kg
⇒ C.V1

= 4.5 * 100% = 6.8%
66


2nd data set:

x 2  = 36 kg,

S 2  =

4.5 kg
⇒ C.V2

= 4.5 * 100% = 12.5%
36
 (
1
)Since

C.V2

> C.V , the relative variability of the 2nd  data set is
larger than the relative variability of the 1st data set.

If we use the standard deviation to compare the variability of the
two data

sets, we will wrongly conclude that the two data sets
have the same variability because the standard deviation of both sets is 4.5 kg.



Chapter 3: Probability The Basis o Statistical Inference


3.1 Introduction
3.2 Probability
3.3 Elementary Properties of Probability
3.4 Calculating the Probability of an Event


General Definitions and Concepts:


Probability:
Probability is a measure (or number) used to measure the chance of the occurrence of some event. This number is between
0 and 1.


An Experiment:
An experiment is some procedure (or process) that we do.


Sample Space:
The  sample  space  of  an  experiment  is  the  set  of  all possible  outcomes  of  an  experiment.  Also,  it  is  called  the
universal set, and is denoted by Ω .


An Event:
Any subset of the sample space Ω is called an event.
• φ ⊆ Ω
•  Ω ⊆ Ω

is an event     (impossible event)
is an event     (sure event)


Example:
Experiment: Selecting a ball from a box containing 6 balls numbered from 1 to 6 and observing the number on the selected ball.
This experiment has 6 possible outcomes.
The sample space is:

Ω = {1, 2, 3, 4, 5, 6}.
Consider the following events:
E1  = getting an even number


= { 2, 4, 6 }⊆ Ω

E2  =

getting a number less than 4

= {1, 2, 3 }⊆ Ω
E3  =

getting 1 or 3

= { 1,

3 }⊆ Ω
E4  =
E5  =
E6  =

getting an odd number = {1, 3, 5 }⊆ Ω
getting a negative number = { } = φ ⊆ Ω
getting a number less than 10 = {1, 2, 3, 4, 5, 6 } = Ω ⊆ Ω


Notation:

n(Ω) = no. of outcomes (elements) in Ω
n(E ) = no. of outcomes (elements) in the event E


Equally Likely Outcomes:
The outcomes of an experiment are equally likely if the outcomes have the same chance of occurrence.


Probability of An Event:
If the experiment has


n(Ω)



equally likely outcomes, then
the probability of the event E is denoted by P(E) and is defined by:
P(E )

n(E )

no. of outcomes  in  E



Example:

=           =
n(Ω)   no.


of outcomes

in  Ω
In the ball experiment in the previous example, suppose the ball is selected at random. Determine the probabilities of the following events:
E1  = getting an even number
E2  =
E3  =
Solution:

getting a number less than 4 getting 1 or 3
Ω = {1, 2, 3, 4, 5, 6} ;
E1  = {2, 4, 6}       ;
E2  = {1, 2, 3}       ;
E3  = {1, 3}         ;

n(Ω) = 6
n(E1 ) = 3
n(E2 ) = 3
n(E3 ) = 2
The outcomes are equally likely.
∴P(E1

) = 3 ,
6

P(E2

) = 3 ,
6

P(E3

) = 2 ,
6

Some Operations on Events:
Let A and B be two events defined on the sample space Ω .

Union of Two events: ( A ∪ B )  or  ( A + B )
The event

A ∪ B

consists of all outcomes in A or in B or in
both A and B. The event
or both A and B occur.

A ∪ B

occurs if A occurs, or B occurs,



Intersection of Two Events: ( A ∩ B )
The event

A ∩ B

Consists of all outcomes in both A and B.
The event

A ∩ B

Occurs if both A and B occur.



Complement of an Event:  ( A )   or   ( AC )   or   ( A ' )
The complement of the even  A is denoted by



A . The even
A  consists of all outcomes of Ω but are not in A. The even  A
occurs if  A does not.











Example:
Experiment: Selecting a ball from a box containing 6 balls numbered 1, 2, 3, 4, 5, and 6 randomly.
Define the following events:
E1  = {2, 4, 6} = getting an even number.

E2  = {1, 2, 3} = getting a number <  4.
E4  = {1, 3, 5} = getting an odd number.

(1)

E1 ∪ E2  = {1, 2, 3, 4, 6 }
= getting an even number or a number less than 4.
P(E1

∪ E2

) = n(E1  ∪ E2 ) = 5
n(Ω)     6

(2)

E1 ∪ E4  = { 1, 2, 3, 4, 5, 6 }= Ω
= getting an even number or an odd number.
P(E1

∪ E4

) = n(E1  ∪ E4 )
n(Ω)

= 6 = 1
6

Note:

E1 ∪ E4  = Ω . E1  and E4

are called exhaustive events. The
union of these events gives the whole sample space.
(3)

E1 ∩ E2  = { 2 }

= getting an even number and a number
less than 4.
P(E1

∩ E2

) = n(E1  ∩ E2 ) = 1
n(Ω)     6


(4)

E1 ∩ E4  = φ

= getting an even number and an odd number.
 (
E 
 
∩
 
E
)
 
=
 
n
(
E
1 
 
∩
 
E
4
 
)
    
 
n
(
φ
1            
 
4
n
(
Ω
)
=  
 
6
) (
)
)P(                            = 0 = 0
6



Note:

E1 ∩ E4

= φ .  E1   and  E4  are  called  disjoint  (or  mutually
exclusive)  events.  These  kinds

of  events  can  not  occurred
simultaneously (together in the same time).
(5)    The complement of E1
E1   = not getting an even number = {2, 4, 6}
= getting an odd number.

= {1, 3, 5}
= E4


Mutually exclusive (disjoint) Events:
The events A and B are disjoint (or mutually exclusive) if:
A ∩ B = φ .
For   this   case,   it   is

impossible

that

both   events   occur
simultaneously (i.e., together in the same time). In this case:
(i)
(ii)

P(A ∩ B) = 0
P(A ∪ B) = P(A) + P(B)
If  A∩B  ≠  φ,  then  A  and  B  are  not  mutually  exclusive  (not
disjoint).












A∩B ≠ φ
A and B are not
mutually exclusive (It is possible that both events occur in the same time)

A∩B = φ
A and B are mutually
exclusive (disjoint) (It is impossible that both events occur in the same time)


Exhaustive Events:
The events A1 , A2 ,K, An   are exhaustive events if:
A1  ∪ A2  ∪ K ∪ An

= Ω .
For this case,

P(A1  ∪ A2  ∪K ∪ An ) = P(Ω) = 1


Note:
1. A ∪ A = Ω

(A and A

are exhaustive events)
2. A ∩ A = φ   (A and
3. n(A ) = n(Ω) − n(A)
4.  P(A ) = 1 − P(A)

A   are mutually exclusive (disjoint) events)











General Probability Rules:
1.      0 ≤ P(A) ≤ 1
2.      P(Ω) = 1
3.      P(φ ) = 0
4.       P(A ) = 1 − P(A)

The Addition Rule:
For any two events A and B:
P(A ∪ B ) = P(A) + P(B ) − P(A ∩ B )
Special Cases:
1. For mutually exclusive (disjoint) events A and B
P(A ∪ B ) = P(A) + P(B )
2. For mutually exclusive (disjoint) events

E1 , E2 ,K, En :
P(E1  ∪ E2  ∪ K ∪ En ) = P(E1 ) + P(E2 ) + L + P(En )

Note:
If the events



A1 , A2 ,K, An



are



exhaustive and mutually exclusive
(disjoint) events, then:
P(A1  ∪ A2  ∪ K ∪ An ) = P(A1 ) + P(A2 ) + L + P(An ) = P(Ω) = 1


Marginal Probability:
Given some variable that can be broken down into (m)
categories  designated  by

A1 ,

A2 , L,  Am

and  another  jointly
occurring  variable  that  is  broken  down  into  (n)  categories
designated by

B1 , B2 , L, Bn .


	
	B1
	B2
	…
	Bn
	Total

	A1
	n( A1 ∩ B1 )
	n( A1 ∩ B2 )
	…
	n( A1 ∩ Bn )
	n( A1 )

	A2
	n( A2  ∩ B1 )
	n( A2  ∩ B2 )
	…
	n( A2  ∩ Bn )
	n( A2 )

	.
.
.
	.
.
.
	.
.
.
	.
.
.
	.
.
.
	.
.
.

	Am
	n( Am  ∩ B1 )
	n( Am  ∩ B2 )
	…
	n( Am  ∩ Bn )
	n( Am )

	Total
	n(B1 )
	n(B2 )
	…
	n(Bn )
	n(Ω)


(This table contains the number of elements in each event)

	
	B1
	B2
	…
	Bn
	Marginal
Probability

	A1
	P( A1 ∩ B1 )
	P( A1 ∩ B2 )
	…
	P( A1 ∩ Bn )
	P( A1 )

	A2
	P( A2  ∩ B1 )
	P( A2  ∩ B2 )
	…
	P( A2  ∩ Bn )
	P( A2 )

	.
.
.
	.
.
.
	.
.
.
	.
.
.
	.
.
.
	.
.
.

	Am
	P( Am  ∩ B1 )
	P( Am  ∩ B2 )
	…
	P( Am  ∩ Bn )
	P( Am )

	Marginal
Probability
	P( B1 )
	P( B2 )
	…
	P( Bn )
	1.00


(This table contains the probability of each event)


The

marginal probability of

Ai , P( Ai ), is equal to the sum of

the joint probabilities of

Ai   with all categories of B. That is:
P( Ai ) =

P( Ai  ∩ B1 ) + P( Ai  ∩ B2 ) +K + P( Ai  ∩ Bn )
n



For example,

= ∑ P( Ai  ∩ B j )
j =1
P( A2 ) =

P( A2  ∩ B1 ) + P( A2  ∩ B2 ) +K + P( A2  ∩ Bn )
n
= ∑ P( A2  ∩ B j )
j =1
We define the marginal probability of way.
Example:




B j , P( B j ), in a similar
Table of number of elements in each event:
	
	B1
	B2
	B3
	Total

	A1
	50
	30
	70
	150

	A2
	20
	70
	10
	100

	A3
	30
	100
	120
	250

	Total
	100
	200
	200
	500


 (
B
1
B
2
B
3
Marginal
Probability
A
1
0.1
0.06
0.14
0.3
A
2
0.04
0.14
0.02
0.2
A
3
0.06
0.2
0.24
0.5
Marginal
Probability
0.2
0.4
0.4
1
)Table of probabilities of each event:

For example:
P( A2 ) =


P( A2  ∩ B1 ) + P( A2  ∩ B2 ) +


P( A2  ∩ Bn )




Applications:

= 0.04 + 0.14 + 0.02
= 0.2


Example:
630 patients are classified as follows:
	Blood Type
	O
(E1 )
	A
(E2 )
	B
(E3 )
	AB
(E4 )
	

Total

	No. of patients
	284
	258
	63
	25
	630


• Experiment: Selecting a patient at random and observe
his/her blood type.
• This experiment has 630 equally likely outcomes
n(Ω) = 630
Define the events:
E1  = The blood type of the selected patient is "O"
E2  = The blood type of the selected patient is "A"
E3  = The blood type of the selected patient is "B"
E4  = The blood type of the selected patient is "AB"
Number of elements in each event:
n(E1 ) = 284,

n(E 2

) = 258,
n(E3 ) = 63,
Probabilities of the events:

n(E4 ) = 25.
P(E1

) = 284 =0.4508,
630

P(E2

) = 258 =0.4095,
630
P(E3

) =  63 =0.1,
630

P(E4

) =  25 =0.0397,
630
Some operations on the events:
1.  E2  ∩ E4 =

the blood type of the selected patients is "A" and
"AB".
E2  ∩ E4 = φ



(disjoint events / mutually exclusive events)
P(E2  ∩ E4 ) = P(φ) = 0
2.  E2  ∪ E4 =  the blood type



of the selected patients is "A" or
"AB"

 (
⎪
)⎧      n(E2  ∪ E4 ) = 258 + 25 = 283 = 0.4492
 (
2             
 
4          
 
⎨
)P( E  ∪ E  ) = ⎪
⎪

n(Ω)

630
or
258




 25 

630

283
 (
⎩
)⎪P(E2 ) + P(E4 ) = 630 + 630 = 630 = 0.4492

(since

E2  ∩ E4

= φ )
3. E1

= the blood type of the selected patients is not "O".
n(E1  ) = n(Ω) − n(E1 ) = 630 − 284 = 346

P(E

) =  n( E1  ) = 346 = 0.5492
1             n(Ω)

630
another solution:
C
P(E1
Notes:

) = 1 − P(E1 ) = 1 − 0.4508 = 0.5492
1. E1 , E2 , E3 , E4

are mutually disjoint,

Ei  ∩ E j  = φ

(i ≠

j ).
2. E1 , E2 , E3 , E4

are exhaustive events,

E1  ∪ E2  ∪ E3  ∪ E4

= Ω .


Example:
 (
Age
)339  physicians  are  classified  based  on  their  ages  and smoking habits as follows.
Smoking Habit
	
	Daily
(B1 )
	Occasionally
(B2 )
	Not at all
(B3 )
	

Total

	20 - 29  (A1 )
	31
	9
	7
	47

	30 - 39  (A2 )
	110
	30
	49
	189

	40 - 49  (A3 )
	29
	21
	29
	79

	50+       (A4 )
	6
	0
	18
	24

	Total
	176
	60
	103
	339




Experiment: Selecting a physician at random
The number of elements of the sample space is


n(Ω) = 339 .
The outcomes of the experiment are equally likely. Some events:
•  A3  = the selected physician is aged 40 - 49

(    )     n(A3 )


 79 
P A3    =

n(Ω) = 339 = 0.2330
•  B2  =

the selected physician smokes occasionally
P(B2 )

= n(B2 )
n(Ω)

=  60  = 0.1770
339
•  A3  ∩ B2

= the  selected  physician  is  aged  40-49   and
smokes occasionally.
P(A3  ∩ B2 ) =

n(A3  ∩ B2 )
n(Ω)

=  21 = 0.06195
339
•  A3  ∪ B2

= the selected physician is aged 40-49 or smokes
occasionally (or both)
P(A3  ∪ B2 ) = P(A3 ) + P(B2 ) − P(A3  ∩ B2 )
=  79  +  60  −  21
339

339

339

•  A4

= 0.233 + 0.177 − 0.06195 = 0.3481
=  the selected physician is not 50 years or older.
 (
4
)=  A1 ∪ A2  ∪ A3
 (
4
)P(A

) = 1 − P(A  )
= 1 −

n(A4 )
n(Ω)

= 1 −  24  = 0.9292
339
•  A2  ∪ A3  = the selected physician is aged 30-39 or  is
aged 40-49
= the selected physician is aged 30-49
⎧ P(A

∪ A ) = n(A2  ∪ A3 ) = 189 + 79 = 268 = 0.7906
⎪           2          3
⎪
⎨ or
⎪

n(Ω)

339


189

339


79
⎪P(A

∪ A ) = P(A

) + P(A  ) =

+        = 0.7906
⎩         2          3

2

(Since

3
A2  ∩ A3

339
= φ )

339


Example:
Suppose that there is a population of pregnant women with:
• 10% of the pregnant women delivered prematurely.
• 25% of the pregnant women used some sort of medication.

• 5% of the pregnant women delivered prematurely and used
some sort of medication.
Experiment: Selecting a woman randomly from this population. Define the events:
• D = The selected woman delivered prematurely.
• M = The selected women used medication.
•  D ∩ M

= The selected woman delivered prematurely and
used some sort of medication. Percentages:
%(D ) = 10%

%(M ) = 25%

%(D ∩ M ) = 5%
The complement events:
D  = The selected woman did not deliver prematurely.
M  = The selected women did not use medication.


A Two-way table:  (Percentages given by a two-way table):
	
	M
	
M
	Total

	D
	5
	?
	10

	
D
	?
	?
	?

	Total
	25
	?
	100




	
	M
	
M
	Total

	D
	5
	5
	10

	
D
	20
	70
	90

	Total
	25
	75
	100


The probabilities of the given events are:
P(D ) =  %(D ) =   10%  = 0.1
100%

100%
P(M ) = %(M ) =  25%

= 0.25
100%

100%
P(D ∩ M ) = %(D ∩ M ) =   5%   = 0.05
100%

100%
Calculating probabilities of some events:
D ∪ M

= the selected woman delivered prematurely or used
medication.
P(D ∪ M ) = P(D ) + (M ) − P(D ∩ M )
= 0.1 + 0.25 − 0.05 = 0.3


(by the rule)

M = The selected woman did not use medication
P(M ) = 1 − P(M ) = 1 − 0.25 = 0.75
P(M ) =  75  = 0.75
100

(by the rule) (from the table)
D = The selected woman did not deliver prematurely
P(D ) = 1 − P(D) = 1 − 0.10 = 0.90
P(D ) =   90  = 0.90
100

(by the rule) (from the table)
D ∩ M =

the selected woman did not deliver prematurely and did
not use medication.
P(D ∩ M ) =   70  = 0.70
100



(from the table)
D ∩ M =

the selected woman did not deliver prematurely and
used medication.
P(D ∩ M ) =   20
100



= 0.20



(from the table)
D ∩ M =

the selected woman delivered prematurely and did not
use medication.
P(D ∩ M ) =    5  = 0.05
100



(from the table)
D ∪ M

= the selected woman delivered prematurely or did not use
medication.
P(D ∪ M ) = P(D) + (M )− P(D ∩ M )
= 0.1 + 0.75 − 0.05 = 0.8



(by the rule)
D ∪ M

= the selected woman did not deliver

prematurely or

used
medication.
P(D ∪ M ) = P(D )+ (M ) − P(D ∩ M )
= 0.9 + 0.25 − 0.20 = 0.95



(by the rule)
D ∪ M

= the selected woman did not deliver prematurely or did
not use medication.
P(D ∪ M ) = P(D )+ (M )− P(D ∩ M )
= 0.9 + 0.75 − 0.70 = 0.95



(by the rule)


Conditional Probability:
• The conditional probability of the event A when we know
that the event B has already occurred is defined by:
P(A | B) =

P(A ∩ B )
P(B)

; P(B) ≠ 0

• P(A | B) = The conditional probability of A given B.

Notes:


P(A ∩ B )


n(A ∩ B )/ n(Ω) =

n(A ∩ B )
(1)


(2)

P(A | B ) =

P(B | A) =


P(B )      = P(A ∩ B ) P(A)

n(B)/ n(Ω)

n(B )
(3) For calculating
following:

P(A | B), we may use any one of the

(i)


(ii)

P(A | B ) =
(       )

P(A ∩ B )
P(B )
n(A ∩ B )
P A | B  =

n(B )
(iii)  Using the restricted table directly.


Multiplication Rules of Probability:
For any two events A and B, we have:





 (
Age
)Example:

P(A ∩ B ) =
P(A ∩ B ) =

P(B )P(A | B )
P(A)P(B | A)


Smoking Habit
	
	Daily
(B1 )
	Occasionally
(B2 )
	Not at all
(B3 )
	

Total

	20-29 (A1 )
	31
	9
	7
	47

	30-39 (A2 )
	110
	30
	49
	189

	40-49 (A3 )
	29
	21
	29
	79

	50+    (A4 )
	6
	0
	18
	24

	Total
	176
	60
	103
	339


Consider the following event:
(B1 | A2) = the selected physician smokes daily given that his

age is between 30 and 39
•  P(B1

) = n( B1 ) =
n(Ω)

176
339

= 0.519
•  P(B1  | A2 ) =

P(B1  ∩ A2 )
P(A2 )
= 0.324484 = 0.5820
0.557522
P(B1

∩ A2 ) =

n( B1 ∩ A2 )
n(Ω)

=  110 = 0.324484
339


P(A2 )

=  n( A2 )
n(Ω)

= 189 = 0.557522
339
another solution:
P(B1


| A2

) =  n(B1  ∩ A2 )
n(A2 )

= 110 = 0.5820
189
Notice that:
P(B1 ) = 0.519
P(B1  | A2 ) = 0.5820
P(B1  | A2 ) >

P(B1 ) !! …

P(B1 ) ≠  P(B1  | A2 )
What does this mean?
We will answer this question after talking about the concept of independent events.




Example: (Multiplication Rule of Probability)
A  training  health  program  consists  of  two  consecutive parts. To pass this program, the trainee must pass both parts of the program. From the past experience, it is known that 90% of
the trainees pass the first part, and 80% of those who pass the
first  part  pass  the  second  part.  If  you  are  admitted  to  this program, what is the probability that you will pass the program? What is the percentage of trainees who pass the program? Solution:
Define the following events:
A = the event of passing the first part

B = the event of passing the second part
A∩B = the event of passing the first part and the second Part
=  the event of passing both parts
= the event of passing the program
Therefore, the probability of passing the program is P(A∩B).
From the given information:
The probability of passing the first part is:
P(A) = 0.9

(  90%  = 0.9)
100%
The probability of passing the second part given that the trainee has already passed the first part is:
P(B|A) = 0.8      (  80% 
100%

= 0.8)
Now, we use the multiplication rule to find P(A∩B) as follows: P(A∩B) = P(A) P(B|A) = (0.9)(0.8) = 0.72
We can conclude that 72% of the trainees pass the program.


Independent Events
There are 3 cases:
•  P(A | B ) > P(A)
(knowing B increases the probability of occurrence of A)
•  P(A | B) < P(A)
(knowing B decreases the probability of occurrence of A)
•  P(A | B) = P(A)
(knowing B has no effect on the probability of occurrence
of A). In this case A is independent of B.
Independent Events:
•     Two  events  A  and  B  are  independent
following conditions is satisfied:

if  one  of  the
(i)
⇔ (ii)
⇔ (iii)

P(A | B ) = P(A)
P(B | A) = P(B)
P(B ∩ A) = P(A)P(B )


Note:   The   third   condition   is   the   multiplication   rule   of independent events.

Example:

Suppose that A and B are two events such that: P(A) = 0.5 ,  P(B)=0.6,   P(A∩B)=0.2.
Theses two events are not independent (they are dependent)
because:
P(A) P(B) =0.5×0.6 = 0.3
P(A∩B)=0.2.
P(A∩B) ≠ P(A) P(B)
Also, P(A)= 0.5 ≠ P(A|B) =

P( A ∩ B) = 0.2 = 0.3333 .
P(B)

0.6
Also, P(B) = 0.6 ≠ P(B|A) =

P( A ∩ B) = 0.2 = 0.4 .
P( A)

0.5
 (
B
B
Total
A
0.2
?
0.5
A
?
?
?
Total
0.6
?
1.00
)For this example, we may calculate probabilities of all events. We can use a two-way table of the probabilities as follows:










We complete the table:
	
	B
	B
	Total

	A
	0.2
	0.3
	0.5

	A
	0.4
	0.1
	0.5

	Total
	0.6
	0.4
	1.00


P( A ) = 0.5
P(B ) = 0.4
P( A ∩ B ) = 0.3
P( A ∩ B) = 0.4
P( A ∩ B ) = 0.1
P( A ∪ B) = P( A) + P( B) − P( A ∩ B) = 0.5 + 0.6 − 0.2 = 0.9
P( A ∪ B ) = P( A) + P(B ) − P( A ∩ B ) = 0.5 + 0.4 − 0.3 = 0.6
P( A ∪ B) = exercise
P( A ∪ B ) = exercise
Note: The Addition Rule for Independent Events:
If the events A and B are independent, then

P(A ∪ B ) = P(A) + P(B ) − P(A ∩ B )
= P(A) + P(B ) − P( A) P(B)

(Addition rule)


Example: (Reading Assignment)
Suppose that a dental clinic has 12 nurses classified as follows:
	Nurse
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Has children
	Yes
	No
	No
	No
	No
	Yes
	No
	No
	Yes
	No
	No
	No

	Works at night
	No
	No
	Yes
	Yes
	Yes
	Yes
	No
	No
	Yes
	Yes
	Yes
	Yes


The experiment is to randomly choose one of these nurses. Consider the
following events:
C = the chosen nurse has children
N = the chosen nurse works night shift
a)  Find The probabilities of the following events:
1.  the chosen nurse has children.
2.  the chosen nurse works night shift.
3.  the chosen nurse has children and works night shift.
4.  the chosen nurse has children and does not work night shift.
b) Find the probability of choosing a nurse who woks at night given that she has children.
c)  Are the events C and N independent? Why?
d)  Are the events C and N disjoint? Why?
e)  Sketch the events C and N with their probabilities using Venn diagram.
Solution:
We can classify the nurses as follows:
	
	N (Night shift)
	N
(No night shift)
	total

	C
(Has Children)
	2
	1
	3

	C
(No Children)
	6
	3
	9

	total
	8
	4
	12


a) The experiment has n(Ω) = 12 equally likely outcomes.

P(The chosen nurse has children) = P(C) =

n(C ) =  3 = 0.25
n(Ω)

P(The chosen nurse works night shift) = P(N) =

12
n( N ) =  8  = 0.6667
n(Ω)   12
P(The chosen nurse has children and works night shift)
= P(C∩N)=

n(C I N ) =  2 = 0.16667
n(Ω)       12
P(The chosen nurse has children and does not work night shift)

 (
n
(
C 
I
 
N
 
)
   
 
 1
 
)=  P(C I N ) =                   =     = 0.0833
n(Ω)       12
b) The probability of choosing a nurse who woks at night given that she has children:
P( N | C ) = P(C I N ) = 2 / 12 = 0.6667
P(C )

0.25
c) The events C and N are independent because

P( N | C ) = P( N ) .
d) The events C and N not are disjoint because C∩N≠φ. (Note: n(C∩N)=2)
e) Venn diagram


3.5 Bayes' Theorem, Screening Tests, Sensitivity, Specificity, and Predictive Value Positive and Negative:     (pp.79-83)
There are two states regarding the disease and two states regarding the result of the screening test:








We define the following events of interest:
D : the individual has the disease (presence of the disease)
D : the individual does not have the disease (absence of
The disease)
T : the individual has a positive screening test result
T  : the individual has a negative screening test result

• There are 4 possible situations:
True status of the disease


 (
+ve    
(D
: Pre
s
ent)     
-
ve   (
 
D
 
:Absent)
+ve  (T)
Correct diagnos
i
ng
false
 
positive
 
result
-
ve 
 
(
 
T
 
)
false negative result
Correct diagnosing
)Result of the test


Definitions of False Results:
There are two false results:
1. A false positive result:
This result happens when a test indicates a positive status when the true status is negative. Its probability is:
P(T | D ) = P(positive result | absence of the disease)


2.  A false negative result:
This result happens when a test indicates a negative status when the true status is positive. Its probability is:
P(T

| D)

= P(negative result | presence of the disease)


Definitions of the Sensitivity and Specificity of the test:
1. The Sensitivity:

The sensitivity of a test is the probability of a positive test result given the presence of the disease.
P(T | D) = P(positive result of the test | presence of the disease)


2. The specificity:
The specificity of a test is the probability of a negative test result given the absence of the disease.
P(T

| D )

= P(negative result of the test | absence of the disease)


To clarify these concepts, suppose we have a sample of

(n)
subjects who are cross-classified according to Disease Status and Screening Test Result as follows:


	
	Disease
	

	Test Result
	Present (D)
	Absent ( D )
	Total

	Positive (T) Negative ( T )
	a c
	b d
	a + b = n(T)
c + d = n( T )

	Total
	a + c = n(D)
	b + d = n( D )
	n




For example, there are (a) subjects who have the disease and whose screening test result was positive.
From  this  table  we  may  compute  the  following  conditional probabilities:
1. The probability of false positive result:
P(T | D ) = n(T ∩  =D ) =    b 	
n(D )

b + d
2. The probability of false negative result:

P(T


| D)

=  n(T ∩ D)
n(D)

   c 	
= a + c
3. The sensitivity of the screening test:

P(T | D)

= n(T ∩ D) =
n(D)

   a 	
a + c
4. The specificity of the screening test:

P(T


| D )

= n(T ∩ D ) =
n(D )

   d 	
b + d

Definitions of the Predictive Value Positive and Predictive
Value Negative of a Screening Test:


1. The predictive value positive of a screening test:
The predictive value positive is the probability that a subject has the disease, given that the subject has a positive screening test result:


P( D | T )

= P(the subject has the disease | positive result)
=  P(presence of the disease | positive result)


2. The predictive value negative of a screening test:
The predictive value negative is the probability that a subject does  not  have  the  disease,  given  that  the  subject  has  a negative screening test result:


P(D | T )

= P(the subject does not have the disease | negative result)
= P(absence of the disease | negative result)


Calculating  the  Predictive  Value  Positive  and  Predictive
Value Negative:
(How to calculate

P( D | T )

and

P(D | T ) ):
We   calculate   these   conditional   probabilities   using   the knowledge of:
1. The sensitivity of the test =
2. The specificity of the test =

P(T

P(T

| D)

| D )
3. The  probability  of  the  relevant  disease  in  the  general population, P(D). (It is usually obtained from another independent study)


Calculating the Predictive Value Positive,
P(D | T) = P(T ∩ D) 
P(T )

P( D | T ) :

But we know that:
P(T) = P(T ∩ D) + P(T ∩ D)
P(T ∩ D) = P(T | D) P(D)
P(T ∩ D) = P(T | D) P(D)

(multiplication rule) (multiplication rule)
P(T) = P(T | D) P(D) +

P(T | D) P(D)


Therefore, we reach the following version of Bayes' Theorem:
P(D | T) =                P(T | D) P(D)                  ………… (1)
P(T | D) P(D) +

P(T | D) P(D)


Note:
P(T | D)



= sensitivity.
P(T | D) = 1 − P(T

| D )

= 1 – specificity.
P(D) = The probability of the relevant disease in the general population.
P(D) = 1 - P(D) .


Calculating the Predictive Value Negative,

P(D | T ) :
To obtain the predictive value negative of a screening test, we use the following statement of Bayes' theorem:


P(D | T) =     =     

P(T | D) P(D) 	


(2)



Note:
P(T | D)

P(T | D) P(D) +


= specificity.


P(T | D) P(D)

…………
P(T | D) = 1 − P(T | D)

= 1 – sensitivity.


Example:
A medical research team wished to evaluate a proposed screening test for Alzheimer's disease. The test was given to a random sample of 450 patients with Alzheimer's disease and an
independent random sample

of 500 patients without symptoms
of the disease. The two samples were drawn from populations of subjects who were 65 years of age or older. The results are as follows:

Alzheimer Disease
Test Result     Present (D)

Absent ( D )  Total
Positive (T)            436                  5              441
Negative ( T )          14                 495            509
Total                      450                500            950


Based

on  another  independent  study,  it  is  known  that  the
percentage  of  patients  with  Alzheimer's  disease  (the  rate  of prevalence of the disease) is 11.3% out of all subjects who were
65 years of age or older.
Solution:
Using these data we estimate the following quantities:
1. The sensitivity of the test:
P(T | D) = n(T ∩ D) = 436 = 0.9689
n(D)

450


2. The specificity of the test:
P(T | D) = n(T ∩ D ) = 495 = 0.99
n(D )

500


3. The probability of the disease in the general population, P(D): The rate of disease in the relevant general population, P(D), cannot be computed from the sample data given in the table. However,  it  is  given  that  the  percentage  of  patients  with
Alzheimer's disease is 11.3% out of all subjects who

were 65
years of age or older. Therefore P(D) can be computed to be:
P(D) =

11.3 % = 0.113
100 %


4. The predictive value positive of the test:
We  wish  to  estimate  the  probability  that  a  subject  who  is positive on the test has Alzheimer disease. We use the Bayes' formula of Equation (1):
P(D | T) =                    P(T | D) P(D)              .
P(T | D) P(D) +

P(T | D) P(D)
From the tabulated data we compute:

P(T | D) = 436 = 0.9689
450


(From part no. 1)
P(T | D) =  n(T ∩ D) =    5  = 0.01
n(D )

500
Substituting of these results into Equation (1), we get:
P(D | T) =             (0.9689) P(D)         	
(0.9689) P(D) +

(0.01) P(D)
=                         (0.9689) (0.113)                = 0.93
(0.9689) (0.113) +

(0.01) (1 - 0.113)
As we see, in this case, the predictive value positive of the test is very high.


5. The predictive value negative of the test:
We  wish  to  estimate  the  probability  that  a  subject  who  is negative on the test does not have Alzheimer disease. We use the Bayes' formula of Equation (2):
P(D | T) =     =    

P(T | D) P(D) 	
P(T | D) P(D) +

P(T | D) P(D)
To	compute probabilities:

P(D | T) ,    we    first    compute    the    following
P(T | D) =  495 = 0.99
500

(From part no. 2)
P(D) = 1 - P(D) = 1 - 0.113 = 0.887
P(T | D) = n(T ∩ D) =   14  = 0.0311
n(D)

450
Substitution in Equation (2) gives:
P(D | T) =     =    

P(T | D) P(D) 	
P(T | D) P(D) +

P(T | D) P(D)

=                     (0.99)(0.887) 	 (0.99)(0.887) + (0.0311)(0.113)
= 0.996
As we see, the predictive value negative is also very high.

CHAPTER 4:  Probabilistic Features of Certain Data
Distribution (Probability Distributions)


4.1  Introduction:
The  concept  of  random  variables  is  very  important  in
Statistics. Some events can be defined using random variables.
There are two types of random variables:
⎧Discrete

Random

Variables
Random variables  ⎨
⎩Continuous


Random


Variables


4.2 Probability Distributions of Discrete Random Variables:
Definition:
The probability distribution of a discrete random variable
is a table, graph, formula,

or other

device used to specify all
possible  values  of  the  random  variable  along  with  their respective probabilities.


Examples of discrete r v.’s
•  The no. of patients visiting KKUH in a week.
•  The no. of times a person had a cold in last year.


Example:
Consider the following discrete random variable.
X = The number of times a Saudi person had a cold in January
2010.
 (
x
(no. of colds
 
a Saudi
 
per
s
on had in January 2010)
Frequency
 
of 
x
(no. of Saudi people who had a 
co
l
d 
x 
times in January 2010)
0
1
2
3
10,000,000
3,000,000
2,000,000
1,000,000
Total
N
 
=
 
16,000,000
)Suppose we are able to count the no. of Saudis which X = x:



Note that the possible values of the random variable X are:
x = 0, 1, 2, 3
Experiment: Selecting a person at random
Define the event:
(X = 0) = The event that the selected person had no cold. (X = 1) = The event that the selected person had 1 cold.
(X = 2) = The event that the selected person had 2 colds.
(X = 3) = The event that the selected person had 3 colds. In general:
(X = x) =The event that the selected person had x colds.


For this experiment, there are outcomes.

n(Ω) = 16,000,000 equally likely
The number of elements of the event (X = x) is:
n(X=x) =

no. of Saudi people who had a cold x times in January 2010.
=  frequency of x.
The probability of the event (X = x) is:
P(X

= x) = n(X  = x ) =   n( X = x)
n(Ω)    16000000


, for x=0, 1, 2, 3


	x
	freq. of x
n(X  = x)
	P(X  = x) =  n(X  = x )
16000000
(Relative frequency)

	0
1
2
3
	10000000
3000000
2000000
1000000
	0.6250
0.1875
0.1250
0.0625

	Total
	16000000
	1.0000



Note:


P(X

= x) =  n(X  = x )
16000000



= Re lative Frequency



=  frequency
16000000


The probability distribution of the discrete random variable X is given by the following table:



	x
	P(X  = x) = f ( x)

	0
1
2
3
	0.6250
0.1874
0.1250
0.0625

	Total
	1.0000


Notes:
• The   probability   distribution   of   any   discrete   random
variable X must satisfy the following two properties:
(1)

0 ≤ P(X

= x) ≤ 1
(2)

∑ P(X
x

= x) = 1
•  Using the probability distribution of a discrete r.v. we can
find the probability of r.v. X.

any event

expressed in term of the


Example:
Consider the discrete r.v. X



in the previous example.
	x
	P(X  = x)

	0
1
2
3
	0.6250
0.1875
0.1250
0.0625

	Total
	1.0000




(1)

P(X

≥ 2) = P(X

= 2) + P(X

= 3) = 0.1250 + 0.0625 = 0.1875
(2)

P(X

> 2) = P(X

= 3) = 0.0625

[note:

P(X

> 2) ≠ P(X

≥ 2)]
(3)

P(1 ≤ X

< 3) = P(X

= 1) + P(X

= 2) = 0.1875 + 0.1250 = 0.3125
(4)

P(X

≤ 2) = P(X

= 0) + P(X

= 1) + P(X

= 2)
= 0.6250 + 0.1875 + 0.1250 = 0.9375
another solution:
P(X  ≤ 2) = 1 − P ( ( X ≤ 2) )
= 1 − P(X  > 2) = 1− P( X = 3) =1 − 0.625 = 0.9375
(5)

P(− 1 ≤ X

< 2) = P(X

= 0) + P(X

= 1)
= 0.6250 + 0.1875 = 0.8125

(6)

P(− 1.5 ≤ X

< 1.3) = P(X

= 0) + P(X

= 1)


(7)


P(X

= 0.6250 + 0.1875 = 0.8125
= 3.5) = P(φ ) = 0
(8)

P(X

≤ 10) = P( X

= 0) + P( X

= 1) + P( X

= 2) + P( X

= 3) = P(Ω) = 1
(9) The probability that the selected person had at least 2 cold:
P(X  ≥ 2) = P(X  = 2) + P(X  = 3) = 0.1875
(10)

The  probability

that

the

selected  person

had  at  most  2
colds:


P(X  ≤ 2) = 0.9375
(11) The probability that the selected person had more than 2 colds:
P(X  > 2)= P(X  = 3) = 0.0625
(12) The probability that the selected person had less than 2
colds:
P(X  < 2) = P(X  = 0) + P(X  = 1) = 0.8125
Graphical Presentation:
The probability distribution of a discrete r. v. X can be graphically represented.
Example:
 (
x
P
(
X 
 
=
 
x
)
0
1
2
3
0.6250
0.1875
0.1250
0.0625
)The probability distribution of the random variable in the previous example is:









The  graphical  presentation  of  this  probability  distribution  is given by the following figure:

Mean and Variance of a Discrete Random Variable
Mean:  The  mean  (or  expected  value)  of  a  discrete  random
variable X is denoted by µ or

µ X . It is defined by:
µ = ∑ x P(X
x

= x )
Variance:  The  variance  of  a  discrete  random  variable  X  is
 (
X
)denoted by σ 2



Example:

or σ 2

. It is defined by:
σ 2  = ∑( x − µ) 2 P(X
x


= x)
We wish to calculate the mean µ

and  the  variance  of  the
 (
x
P
(
X 
 
=
 
x
)
0
1
2
3
0.05
0.25
0.45
0.25
)discrete r. v. X whose probability distribution is given by the following table:









Solution:
	x
	P(X  = x)
	x P(X  = x)
	( x − µ)
	( x − µ) 2
	( x − µ) 2 P( X = x)

	0
	0.05
	0
	-1.9
	3.61
	0.1805

	1
	0.25
	0.25
	-0.9
	0.81
	0.2025

	2
	0.45
	0.9
	0.1
	0.01
	0.0045

	3
	0.25
	0.75
	1.1
	1.21
	0.3025

	Total
	
	µ =
∑ x P(X  = x)
= 1.9
	
	
	σ 2 =
∑ ( x − µ) 2 P( X = x)
= 0.69



µ = ∑ x
x

P(X

= x) = (0)(0.05) + (1)(0.25) + (2)(0.45) + (3)(0.25) =1.9
σ 2  = ∑( x −1.9)2  P(X
x

= x)
= (0 −1.9)2 (0.05)+ (1 −1.9)2 (0.25)+ (2 −1.9)2 (0.45)+ (3 −1.9)2 (0.25)
= 0.69

Cumulative Distributions:
The cumulative distribution function of a discrete r. v. X
is defined by:

P(X

Example:

≤ x) = ∑ P(X
a ≤ x

= a )

(Sum over all values ≤x)
Calculate the cumulative distribution of the discrete r. v. X
whose probability distribution is given by the following table:
	x
	P(X  = x)

	0
1
2
3
	0.05
0.25
0.45
0.25


Use the cumulative distribution to find:
P(X≤2),  P(X<2), P(X≤1.5),  P(X<1.5),  P(X>1),  P(X≥1)
Solution:
 (
x
P
(
X 
 
≤
 
x
)
0
1
2
3
0.05
0.30
0.75
1.0000
)The cumulative distribution of X is:


P(X P(X P(X

≤ 0) = P(X
≤ 1) = P(X
≤ 2) = P(X

= 0)
= 0) + P(X
= 0) + P(X


= 1)
= 1) + P(X




= 2)
P(X

≤ 3) = P(X

= 0)+ L + P(X

= 3)



Using the cumulative distribution, P(X≤2) = 0.75
P(X<2) = P(X≤1) = 0.30
P(X≤1.5) = P(X≤1) = 0.30
P(X<1.5) = P(X≤1) = 0.30
P(X>1) = 1- P(

( X > 1)

) = 1-P(X≤1) = 1- 0.30 = 0.70
P(X≥1) = 1- P(

( X ≥ 1)

) = 1-P(X<1) = 1- P(X≤0)
= 1- 0.05 = 0.95


Example: (Reading Assignment)
Given the following probability distribution of a discrete random variable
X representing the number of defective teeth of the patient visiting a

certain dental clinic:
	x
	P(X = x)

	1
	0.25

	2
	0.35

	3
	0.20

	4
	0.15

	5
	K


a)  Find the value of K.
b) Find the flowing probabilities:
1.  P(X < 3)
2.  P( X ≤ 3)
3.  P(X < 6)
4.  P(X < 1)
5.  P(X = 3.5)
c)  Find the probability that the patient has at least 4 defective teeth. d) Find the probability that the patient has at most 2 defective teeth.
e)  Find the expected number of defective teeth (mean of X). f)  Find the variance of X.
Solution:
a)       1 = ∑ P( X = x) = 0.25 + 0.35 + 0.20 + 0.15 + K
1 = 0.95 + K
K = 1 − 0.95
K = 0.05
The probability distribution of X is:
	x
	P(X = x)

	1
	0.25

	2
	0.35

	3
	0.20

	4
	0.15

	5
	0.05

	Total
	1.00


b) Finding the probabilities:
1.  P(X < 3) = P(X=1)+P(X=2) = 0.25+0.35 = 0.60
2.  P( X ≤ 3) = P(X=1)+P(X=2)+P(X=3) = 0.8
3.  P(X < 6) = P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)= P(Ω)=1
4.  P(X < 1) = P(φ)=0
5.  P(X = 3.5) = P(φ)=0
c) The probability that the patient has at least 4 defective teeth
P(X≥4) = P(X=4)+P(X=5) =0.15+0.05=0.2
d) The probability that the patient has at most 2 defective teeth
P(X≤2) = P(X=1)+P(X=2) = 0.25+0.35=0.6
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e) The expected number of defective teeth (mean of X)
	x
	P(X = x)
	x P(X = x)

	1
	0.25
	0.25

	2
	0.35
	0.70

	3
	0.20
	0.60

	4
	0.15
	0.60

	5
	0.05
	0.25

	Total
	∑P( X = x) = 1
	µ = ∑ x P( X = x) =2.4


The expected number of defective teeth (mean of X) is
µ = ∑ x P( X = x) =(1)(0.25)+(2)(0.35)+(3)(0.2)+(4)(0.15)+(5)(0.05)=2.4
f) The variance of X:
	x
	P(X  = x)
	( x − µ)
	( x − µ) 2
	( x − µ) 2 P( X = x)

	1
	0.25
	-1.4
	1.96
	0.49

	2
	0.35
	-0.4
	0.16
	0.056

	3
	0.20
	0.6
	0.36
	0.072

	4
	0.15
	1.6
	2.56
	0.384

	5
	0.05
	2.6
	6.76
	0.338

	Total
	
	
	
	σ 2 =
∑ ( x − µ) 2 P( X = x)
= 1.34



The variance is σ 2 = ∑ ( x − µ) 2 P( X

= x) = 1.34

Combinations:
Notation (n!):
n!  is read "n factorial". It defined by:
n!= n(n − 1)(n − 2)L(2)(1)
0!= 1







for






n ≥ 1
Example:
Combinations:

5!= (5)(4)(3)(2)(1) = 120
The number of different ways for selecting r objects from n
⎛ n ⎞
distinct objects is denoted by

n Cr

or ⎜

⎟   and is given by:


n Cr  =
r !



n!
(n − r )!;




for

⎝ r ⎠
r = 0, 1, 2, K, n



Notes:
1.



n Cr



is read as  “ n “ choose  “ r ”.
2.  n Cn

= 1 ,

n C0  = 1 ,
3.  n Cr  =

n Cn−r


(for example:

10 C3

= 10 C7   )
4.  n Cr

= number of unordered subsets of a set of (n)
objects such that each subset contains (r) objects.
Example:
For n = 4 and r = 2:
=        4!       =    4!    =    4 × 3 × 2 ×1  
4 C2  =

2! (4 − 2)!

2! × 2!


= 6 (2 ×1)× (2 ×1)
4 C2  =


6 = The number of different ways for selecting 2 objects from 4 distinct objects.
Example:
Suppose that we have the set {a, b, c, d} of (n=4) objects.
We wish to choose a subset of two objects. The possible subsets of this set with 2 elements in each subset are:
{a , b}, {a , c}, {a , d}, {b , d}, {b , c}, {c , d}

The number of these subsets is

4 C2

= 6.

4.3 Binomial Distribution:
•  Bernoulli  Trial:  is  an  experiment  with  only  two  possible
outcomes: S = success   and   F= failure (Boy or girl, Saudi or
non-Saudi, sick or well, dead or alive).
•  Binomial distribution is a discrete distribution.
•  Binomial distribution is used to model an experiment for which:
1. The experiment has a sequence of n Bernoulli trials.
2. The probability of success is

P(S ) =

p , and the probability of
failure is

P(F ) = 1 − p = q .
3. The probability of success

P(S ) = p

is constant for each trial.
4. The trials are independent; that is the outcome of one trial has no effect on the outcome of any other trial.


In this type of experiment, we are interested in the discrete r. v. representing the number of successes in the n trials.


X = The number of successes in the n trials


The possible values of X (number of success in n trails) are:
x = 0, 1, 3, … , n


 (
⎧  
 
C
)The r.v. X has a binomial distribution with parameters n and p , and we write:
 (
x
)X ~ Binomial(n, p)


The probability distribution of X is given by:
P(X


C

= x) = ⎨ n     x   p
⎩ 0
=        n! 	

q n− x

for x = 0, 1, 2, K, n
otherwise
Where:

n      x         x! (n − x )!
 (
x
P
(
X 
 
=
 
x
)
0
n
 
C
0  
 
p  
 
q    
 
=
 
q
0      
 
n
−
0
           
 
n
1
C  
 
p
1 
 
q
 
n
−
1
n    
 
1
)We can write the follows.

probability distribution of X

as a table as

	x
	P(X  = x)

	2
	C   p 2  q n−2
n     2

	M
	M

	n − 1
	C     p n−1  q1
n     n−1

	n
	C   p n  q 0  = p n n     n

	Total
	1.00




Result: (Mean and Variance for normal distribution) If X~ Binomial(n, p) , then
• The mean:
• The variance:

µ = np
σ 2  = npq

(expected value)


Example:
Suppose that the probability that a Saudi man has high
blood

pressure  is  0.15.    Suppose  that  we  randomly  select  a
sample of 6 Saudi men.
(1) Find the probability distribution of the random variable (X) representing the number of men with high blood pressure in the sample.
(2)

Find the expected number of men with high blood pressure
in the sample (mean of X). (3) Find the variance X.
(4) What is the probability that there will be exactly 2 men with high blood pressure?
(5) What is the probability that there will be at most 2 men with high blood pressure?
(6) What is the probability that there will be at lease 4 men with high blood pressure?
Solution:
We are interested in the following random variable:
X  = The number of men with high blood pressure in the sample of 6 men.
Notes:
- Bernoulli trial: diagnosing whether a man has a high blood pressure or not. There are two outcomes for each trial:

S = Success: The man has high blood pressure
F = failure: The man does not have high blood pressure.
- Number of trials = 6 (we need to check 6 men)
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- Probability of success:

P(S ) = p

= 0.15
- Probability of failure:

P(F ) = q = 1 − p = 0.85
- Number of trials: n = 6
- The trials are independent because of the fact that the result
of each man does not affect the result of any other man
since the selection was made ate random.


The  random  variable  X  has  a  binomial  distribution  with parameters: n=6 and p=0.15, that is:
X ~ Binomial (n, p)
X ~ Binomial (6, 0.15)


The possible values of X are:
x = 0, 1, 3, 4, 5, 6


(1) The probability distribution of X is:


P(X

= x) = ⎨ 6 Cx

(0.15) (0.85)

; x = 0,1, 2, 3, 4, 5, 6
⎧                          x                 6− x
⎩  0                              ;



otherwise


The probabilities of all values of X are:
P(X

= 0) =

6 C0

(0.15)0 (0.85)6

= (1)(0.15)0  (0.85)6

= 0.37715
P(X

= 1) =  C

(0.15)1 (0.85)5  = (6)(0.15)(0.85)5  = 0.39933

P(X P(X

= 2) =
= 3) =

6    1

6 C2
6 C3

(0.15)2 (0.85)4
(0.15)3 (0.85)3

= (15)(0.15)2 (0.85)4
= (20)(0.15)3 (0.85)3


= 0.17618
= 0.04145
P(X

= 4) = 6 C4

(0.15)4 (0.85)2

= (15)(0.15)4 (0.85)2

= 0.00549
P(X

= 5) =


6 C5

(0.15)5 (0.85)1  = (6)(0.15)5 (0.85)1  = 0.00039
P(X

= 6) =


6C6

(0.15)6 (0.85)0

= (1)(0.15)6 (1) = 0.00001


The  probability  distribution  of  X  can  by  presented  by  the following table:

	x
	P(X  = x)

	0
1
2
3
4
5
6
	0.37715
0.39933
0.17618
0.04145
0.00549
0.00039
0.00001


The  probability  distribution  of  X  can  by  presented  by  the
following graph:



(2) The mean of the distribution (the expected number of men out of 6 with high blood pressure) is:


(3) The variance is:

µ = np = (6)(0.15) = 0.9
σ 2  = npq = (6)(0.15)(0.85) = 0.765
(4) The probability that there will be exactly 2 men with high blood pressure is:
P(X = 2) = 0.17618
(5) The probability that there will be at most 2 men with high blood pressure is:
P(X ≤ 2) = P(X=0) + P(X=1) + P(X=2)
= 0.37715 + 0.39933 + 0.17618
= 0.95266
(6) The probability that there will be at lease 4 men with high blood pressure is:

P(X ≥ 4) = P(X=4) + P(X=5) + P(X=6)
= 0.00549 + 0.00039 + 0.00001
= 0.00589
Example: (Reading Assignment)
Suppose  that  25%  of  the  people  in  a  certain  population  have  low hemoglobin levels. The experiment is to choose 5 people at random from
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this population. Let the discrete random

variable X be the number of
people out of 5 with low hemoglobin levels.
a)  Find the probability distribution of X.
b) Find the probability that at least 2 people have low hemoglobin levels.
c)  Find the probability that at most 3 people have low hemoglobin levels.
d) Find the expected number of people with low hemoglobin levels
out of the 5 people.
e)  Find the variance of the number of people with low hemoglobin levels out of the 5 people.
Solution:
X = the number of people out of 5 with low hemoglobin levels
The Bernoulli trail is the process of diagnosing the person
Success = the person has low hemoglobin
Failure = the person does not have low hemoglobin
n = 5
p = 0.25

(no. of trials) (probability of success)
q = 1 − p = 0.75

(probability of failure)


a) X has a binomial distribution with parameter

n = 5 and

p = 0.25
X ~ Binomial (n, p )
X ~ Binomial(5, 0.25)
The possible values of X are:
x=0, 1, 2, 3, 4, 5
The probability distribution is:
 (
⎧  
 
C
)P(X

= x) = ⎨ n      x
 (
⎧  
 
C
)⎩ 0

p x   q

n− x  ;

;

for x = 0, 1, 2, K, n
otherwise
P(X

= x) = ⎨ 5     x

(0.25) x

(0.75)

5− x  ;

for

x = 0, 1, 2, 3, 4, 5
⎩ 0                                  ;

otherwise

	x
	P(X = x)

	0
	C   × 0.250 × 0.755−0       = 0.23730
5     0




	x
	P(X = x)

	1
	C  × 0.251 × 0.755−1         = 0.39551
5     1

	2
	C   × 0.25 2 × 0.755−2       = 0.26367
5     2

	3
	C   × 0.253 × 0.755−3        =
5     3                                                            0.08789

	4
	C   × 0.25 4 × 0.755−4       =
5     4                                                            0.01465

	5
	C   × 0.255 × 0.755−5        =
5      5                                                                0.00098

	Total
	∑P( X = x) = 1



b) The probability that at least 2 people have low hemoglobin levels: P(X≥2) = P(X=2)+P(X=3)+P(X=4)+P(X=5)
= 0.26367+ 0.08789+ 0.01465+ 0.00098
= 0. 0.36719

c) The probability that at most 3 people have low hemoglobin levels: P(X≤3) = P(X=0)+P(X=1)+P(X=2)+P(X=3)
= 0.23730+ 0.39551+ 0.26367+ 0.08789
= 0.98437
d) The expected number of people with low hemoglobin levels out of the
5 people (the mean of X):
µ = n p = 5× 0.25 =1.25
e) The variance of the number of people with low hemoglobin levels out
of the 5 people (the variance of X) is:
σ 2  = n pq = 5× 0.25× 0.75 = 0.9375


4.4 The Poisson Distribution:
•    It is a discrete distribution.
•    The Poisson distribution is used to model a discrete r. v.
representing the number of occurrences of some random
event in an interval of time or space (or some volume of matter).
•    The possible values of X are:
x= 0, 1, 2, 3, …
•	The discrete r. v. X is said to have a Poisson distribution with  parameter  (average  or  mean)  λ if  the  probability
distribution of  X is given by



P(X

⎧
⎪
= x) = ⎨
⎪

e −λ λx
x!


;      for

x = 0, 1, 2, 3, K
0         ;       otherwise


where   e = 2.71828  (the natural number). We write :
X ~ Poisson (λ)



Result: (Mean and Variance of Poisson distribution) If  X ~ Poisson (λ), then:
•    The mean (average) of X is :

µ = λ

(Expected value)
•    The variance of X is:

σ 2  = λ


Example:
Some  random  quantities  that  can  be  modeled  by  Poisson distribution:
•    No. of patients in a waiting room in an hours.
•    No. of surgeries performed in a month.
•    No. of rats in each house in a particular city.

Note:
•    λ is the average (mean) of the distribution.
•	If X = The number of patients seen in the emergency unit in a day, and if X ~Poisson  (λ), then:

1.  The average (mean) of patients seen every day in the emergency unit = λ.

2.  The average (mean) of patients seen every month in the emergency unit =30λ.

3.  The average (mean) of patients seen every year in the emergency unit = 365λ.

4.  The average (mean) of patients seen every hour in the emergency unit = λ/24.
Also, notice that:
(i) If   Y = The number of patients seen every month, then:

Y ~ Poisson (λ*), where λ*=30λ
(ii)  W = The number of patients seen every year, then:
W ~ Poisson (λ*), where λ*=365λ
(iii)  V = The number of patients seen every hour, then:
V ~ Poisson (λ*), where λ*=  λ
24
Example:
Suppose that the number of snake bites cases seen at KKUH in a year has a Poisson distribution with average 6 bite cases.
(1) What is the probability that in a year:
(i) The no. of snake bite cases will be 7?
(ii) The no. of snake bite cases will be less than 2?
(2) What is the probability that there will be 10 snake bite cases in 2 years?
(3) What is the probability that there will be no snake bite cases in a month?
Solution:
(1) X =  no. of snake bite cases in a year.
X ~ Poisson (6)

(λ=6)
−6      x
P(X

= x) = e   6   ;
x!

x = 0, 1, 2, K
e −6     7

(i)

P(X

= 7) =        6   = 0.13768
7!
(ii)

P(X

< 2) = P(X

= 0) + P(X

= 1)
−6     0

−6     1
= e   6   + e   6   = 0.00248 + 0.01487 = 0.01735
0!          1!
(2)    Y = no of snake bite cases in 2 years
Y ~ Poisson(12)                   ( λ* = 2λ = (2)(6) = 12)
−12       y
P(Y

= y ) = e    12   :
y !

y = 0 , 1 , 2K
e−12      10
∴ P(Y = 10) =          12   = 0.1048
10!
(3)    W = no. of snake bite cases in a month.
W ~ Poisson (0.5)                         ( λ**  =  λ
12






=  6
12






= 0.5 )

− 0.5          w
P(W

= w) = e       0.5    :
w!

w = 0 , 1 , 2K
P(W

= 0) =     (0.5)


= 0.6065
e −0.5              0
0!


4.5 Continuous Probability Distributions:
For any continuous r. v. X, there exists a function f(x), called the probability density function (pdf) of X , for which:
(1) The total area under the curve of  f(x) equals to 1.

Total area= ∫  ∞

f (x) dx = 1

P(a     X     b)

b  f (x )dx


area
−∞                                                        ≤      ≤

= ∫ a                        =
(2)  The  probability  hat  X  is  between  the  points  (a)  and  (b) equals to the area under the curve of f(x) which is bounded by the point a and b.
(3) In general, the probability of an interval event is given by the area under the curve of f(x) and above that interval.


 (
a
)

 (
(                
 
)    
∫    
 
( 
 
)
)b
 (
∫
)P a ≤ X ≤ b =       f  x dx = area
a
Note:

P(X  ≤ a ) =
−∞

f (x )dx = area

P(X  ≥ b)=

∞
 (
∫      
 
( 
 
)
)f  x  dx = area
b
If X is continuous r.v. then:
1.  P(X  = a) = 0

for any a.
2.  P(X

≤ a ) = P(X

< a )

3.  P(X

≥ b) = P(X

> b)
4.  P(a ≤ X

≤ b) = P(a ≤ X

< b) = P(a < X

≤ b) = P(a < X

< b)
5.  P(X

≤ x) =

cumulative probability
6.  P(X

≥ a) = 1 − P(X

< a) = 1 − P(X

≤ a)
7.  P(a ≤ X

≤ b) = P(X

≤ b)− P(X

≤ a)













P(X

≥ a ) = 1 − P(X

≤ a )

P(a ≤ X

≤ b) = P(X

≤ b)− P(X

≤ a)
A = 1 − B
Total area = 1

b
∫ f (x)dx =
a

b
∫ f (x)dx −
−∞

a
∫ f (x)dx
−∞


4.6 The Normal Distribution:
� One of the most important continuous distributions.
� Many     measurable     characteristics     are     normally     or approximately normally distributed.
(Examples:  height, weight, …)
� The probability density function of the normal distribution is given by:
1       − 1 ( x −µ )2
f ( x) =
σ

e 2    σ
2π

; − ∞ < x < ∞
where (e=2.71828) and (π=3.14159).
The parameters of the distribution are the mean (µ) and the
standard deviation (σ).
� The

continuous r.v. X which has a normal distribution has
several important characteristics:
1.  − ∞ < X

< ∞ ,
2.  The density  function of X , f(x) , has a bell-Shaped curve:








mean = µ
standard deviation = σ
variance  = σ 2


3. The highest point of the curve of  f(x) at  the mean µ . (Mode = µ )
4. The curve of f(x) is symmetric about the mean µ .
µ = mean = mode = median
5. The normal distribution depends on two parameters:
mean = µ                      (determines the location)
standard deviation = σ      (determines the shape)
6. If the r.v. X is normally distributed with mean  µ and
standard deviation σ (variance

σ 2 ), we  write:
X ~ Normal (µ ,σ 2 )

or     X ~ N (µ, σ 2 )
7. The location of the normal distribution depends on µ . The
shape of the normal distribution depends on σ.



Note: The location of the normal distribution depends on µ and its shape depends on σ.
Suppose  we  have  two  normal
distributions:
                N(µ1, σ1)
----------- N(µ2, σ2)















µ1 < µ2, σ1=σ2















µ1 = µ2, σ1<σ2


The Standard Normal  Distribution:

µ1 < µ2, σ1<σ2
The normal distribution with mean

µ = 0

and variance

σ 2  = 1 is
called the standard normal distribution and is denoted by
Normal (0,1) or N(0,1). The standard normal random variable is denoted by (Z), and we write:
Z ~ N(0, 1)
The probability density function (pdf) of Z~N(0,1) is given by:

f ( z) = n( z;0,1) =

1     − 1 z 2
e  2
2π














The   standard   normal   distribution,   Normal   (0,1),   is   very
important because probabilities

of any normal distribution can
be    calculated  from  the  probabilities  of  the  standard  normal distribution.




Result:

If      X ~ Normal

(µ, σ 2 ),   then

Z =  X − µ
σ


~ Normal (0,1).
Calculating Probabilities of Normal (0,1):
Suppose Z ~ Normal (0,1).
For  the  standard  normal  distribution  Z  ~  N(0,1),  there  is  a special table used to calculate probabilities of the form:
P(Z

≤ a)




(i)

P(Z ≤ a) = From the table








(ii)

P(Z ≥ b) = 1 − P(Z ≤ b)
Where:
P(Z ≤ b)

= From the table




(iii)

P(a ≤ Z ≤ b) = P(Z ≤ b)− P(z ≤ a )
Where:
P(Z

≤ b)

= from the table
P(z ≤ a)


= from the table

(iv)

P(Z = a ) = 0

for every a .


Example:
Suppose that  Z ~ N(0,1)
(1)

P(Z ≤ 1.50) = 0.9332
 (
Z
0.00
0.01
…
:
⇓
1.50 
⇒
0.9332
:
)



(2)
 (
Z
0.00
…
0.08
:
:
:
⇓
:
…
…
⇓
0.90
⇒
⇒
⇒
0.8365
)P(Z ≥ 0.98) = 1 − P(Z ≤ 0.98)
= 1 − 0.8365
= 0.1635









(3)
P(− 1.33 ≤ Z ≤ 2.42) =
P(Z ≤ 2.42) − P(Z ≤ −1.33)
= 0.9922 − 0.0918
= 0.9004
 (
Z
…
-
0.03
:
:
⇓
−
1.30
⇒
0.0918
:
)


(4)

P(Z ≤ 0) = P(Z ≥ 0) = 0.5


Notation:
P(Z ≤ Z A ) = A




For example:





Result:

Since the pdf of Z~N(0,1) is symmetric about 0, we have: ZA = − Z1−A
For example:     Z0.35 = − Z1−0.35  = − Z0.65
Z0.86 = − Z1−0.86  = − Z0.14

Example:
Suppose that Z ~ N(0,1).
 (
Z
…
0.05
…
:
⇑
1.60
⇐
0.9505
:
)If   P(Z ≤ a) = 0.9505
Then

a = 1.65








 (
Z
…
-
0.04
:
:
⇑
⇑
−
2.0
⇐⇐
0.0207
:
)Example:
Suppose that Z~N(0,1). Find the value of k such that
P(Z≤k)= 0.0207.
Solution:
.k = −2.04
Notice that k= Z0.0207 = −2.04










Example:
If Z ~ N(0,1), then: Z0.90 =  1.285
Z0.95 = 1.645
Z0.975 = 1.96
Z0.99 = 2.325




Using the result:   ZA = − Z1−A
Z0.10   = − Z0.90 = − 1.285
Z0.05   = − Z0.95 = − 1.645
Z0.025   = − Z0.975 = − 1.96
Z0.01   = − Z0.99 = − 2.325
Calculating Probabilities of Normal  (µ,σ 2 ) :
�  Recall the result:
X ~ Normal (µ,σ 2 )

⇔  Z =  X − µ ~
σ


Normal (0,1)

�   X ≤ a  ⇔

X − µ
σ

≤ a − µ
σ

⇔  Z ≤

a − µ
σ


1.  P(X

≤ a) = P⎛ Z ≤

a − µ ⎞
⎟


= From the table.
 (
⎜
)⎝                   σ  ⎠


⎛              a − µ ⎞
2.  P(X

≥ a) = 1 − P(X

≤ a ) = 1 − P⎜ Z ≤           ⎟
⎝                   σ  ⎠
3.  P(a ≤ X

≤ b) = P(X

≤ b) − P(X

≤ a)
⎛              b − µ ⎞            ⎛

a − µ ⎞
= P⎜ Z ≤

⎟ − P⎜ Z ≤           ⎟
⎝                   σ  ⎠            ⎝                   σ  ⎠
4.   P(X

= a) = 0 , for every a.


4.7 Normal Distribution Application:


Example
Suppose that the hemoglobin levels of healthy adult males are approximately normally distributed with a mean of 16 and a variance of 0.81.
(a) Find that probability that a randomly chosen healthy adult male has a hemoglobin level less than 14.
(b) What is the percentage of healthy adult males who have hemoglobin level less than 14?
(c) In a population of 10,000 healthy adult males, how many
would you expect to have hemoglobin level less than 14?
Solution:
X = hemoglobin level for healthy adults males
Mean: µ = 16
Variance:  σ2  = 0.81
Standard deviation:    σ = 0.9
X ~ Normal (16, 0.81)
(a) The probability that a randomly chosen healthy adult male
has hemoglobin level less than 14 is

P(X

≤ 14).

P(X

≤ 14) = P⎛ Z ≤ 14 − µ ⎞

 (
⎜
)= P⎛ Z ≤

⎝                    σ   ⎠
 (
⎜                                 
 
⎟
)14 −16 ⎞
⎟
⎝                   0.9   ⎠
= P(Z ≤ −2.22)
= 0.0132
(b) The percentage of healthy adult males who have hemoglobin level less than 14 is:
P(X

≤ 14)×100 % = 0.0132 ×100 % =1.32 %

(c) In a population of 10000 healthy adult males, we would expect that the number of males with hemoglobin level less than
14 to be:
P(X

≤ 14)×10000 = 0.0132 ×10000 =132

males


Example:

Suppose that the birth weight of Saudi babies has a normal distribution with mean µ=3.4 and standard deviation σ=0.35.
(a) Find the probability that a randomly chosen Saudi baby has a
birth weight between 3.0 and 4.0 kg.
(b) What is the percentage of Saudi babies who have a birth weight between 3.0 and 4.0 kg?
(c) In a population of 100000 Saudi babies, how many would
you expect to have birth weight between 3.0 and 4.0 kg?


Solution:
X = birth weight of Saudi babies
Mean: µ = 3.4
Standard deviation:    σ = 0.35
Variance:  σ2  = (0.35)2 = 0.1225
X ~ Normal (3.4, 0.1225 )
(a) The probability that a randomly chosen Saudi baby has a
birth weight between 3.0 and 4.0 kg is

P(3.0 < X

< 4.0)

P(3.0 < X

< 4.0) = P(X

≤ 4.0) − P(X

≤ 3.0)
⎛              4.0 − µ ⎞            ⎛

3.0 − µ ⎞
= P⎜ Z ≤

⎟ − P⎜ Z ≤              ⎟
⎝                      σ   ⎠            ⎝                      σ   ⎠
⎛              4.0 − 3.4 ⎞            ⎛

3.0 − 3.4 ⎞
= P⎜ Z ≤

⎟ − P⎜ Z ≤                ⎟
⎝                    0.35    ⎠            ⎝

0.35   ⎠
= P(Z ≤ 1.71) − P(Z ≤ −1.14)
= 0.9564 − 0.1271 = 0.8293














(b) The percentage of Saudi babies who have a birth weight between 3.0 and 4.0 kg is
P(3.0<X<4.0) × 100%= 0.8293× 100%= 82.93%

(c) In a population of 100,000 Saudi babies, we would expect that the number of babies with birth weight between 3.0 and 4.0 kg to be:
P(3.0<X<4.0) × 100000= 0.8293× 100000= 82930 babies





Standard Normal Table
Areas Under the Standard Normal Curve


	z
	-0.09
	-0.08
	-0.07
	-0.06
	-0.05
	-0.04
	-0.03
	-0.02
	-0.01
	-0.00
	z

	-3.50
	0.00017
	0.00017
	0.00018
	0.00019
	0.00019
	0.00020
	0.00021
	0.00022
	0.00022
	0.00023
	-3.50

	-3.40
	0.00024
	0.00025
	0.00026
	0.00027
	0.00028
	0.00029
	0.00030
	0.00031
	0.00032
	0.00034
	-3.40

	-3.30
	0.00035
	0.00036
	0.00038
	0.00039
	0.00040
	0.00042
	0.00043
	0.00045
	0.00047
	0.00048
	-3.30

	-3.20
	0.00050
	0.00052
	0.00054
	0.00056
	0.00058
	0.00060
	0.00062
	0.00064
	0.00066
	0.00069
	-3.20

	-3.10
	0.00071
	0.00074
	0.00076
	0.00079
	0.00082
	0.00084
	0.00087
	0.00090
	0.00094
	0.00097
	-3.10

	-3.00
	0.00100
	0.00104
	0.00107
	0.00111
	0.00114
	0.00118
	0.00122
	0.00126
	0.00131
	0.00135
	-3.00

	-2.90
	0.00139
	0.00144
	0.00149
	0.00154
	0.00159
	0.00164
	0.00169
	0.00175
	0.00181
	0.00187
	-2.90

	-2.80
	0.00193
	0.00199
	0.00205
	0.00212
	0.00219
	0.00226
	0.00233
	0.00240
	0.00248
	0.00256
	-2.80

	-2.70
	0.00264
	0.00272
	0.00280
	0.00289
	0.00298
	0.00307
	0.00317
	0.00326
	0.00336
	0.00347
	-2.70

	-2.60
	0.00357
	0.00368
	0.00379
	0.00391
	0.00402
	0.00415
	0.00427
	0.00440
	0.00453
	0.00466
	-2.60

	-2.50
	0.00480
	0.00494
	0.00508
	0.00523
	0.00539
	0.00554
	0.00570
	0.00587
	0.00604
	0.00621
	-2.50

	-2.40
	0.00639
	0.00657
	0.00676
	0.00695
	0.00714
	0.00734
	0.00755
	0.00776
	0.00798
	0.00820
	-2.40

	-2.30
	0.00842
	0.00866
	0.00889
	0.00914
	0.00939
	0.00964
	0.00990
	0.01017
	0.01044
	0.01072
	-2.30

	-2.20
	0.01101
	0.01130
	0.01160
	0.01191
	0.01222
	0.01255
	0.01287
	0.01321
	0.01355
	0.01390
	-2.20

	-2.10
	0.01426
	0.01463
	0.01500
	0.01539
	0.01578
	0.01618
	0.01659
	0.01700
	0.01743
	0.01786
	-2.10

	-2.00
	0.01831
	0.01876
	0.01923
	0.01970
	0.02018
	0.02068
	0.02118
	0.02169
	0.02222
	0.02275
	-2.00

	-1.90
	0.02330
	0.02385
	0.02442
	0.02500
	0.02559
	0.02619
	0.02680
	0.02743
	0.02807
	0.02872
	-1.90

	-1.80
	0.02938
	0.03005
	0.03074
	0.03144
	0.03216
	0.03288
	0.03362
	0.03438
	0.03515
	0.03593
	-1.80

	-1.70
	0.03673
	0.03754
	0.03836
	0.03920
	0.04006
	0.04093
	0.04182
	0.04272
	0.04363
	0.04457
	-1.70

	-1.60
	0.04551
	0.04648
	0.04746
	0.04846
	0.04947
	0.05050
	0.05155
	0.05262
	0.05370
	0.05480
	-1.60

	-1.50
	0.05592
	0.05705
	0.05821
	0.05938
	0.06057
	0.06178
	0.06301
	0.06426
	0.06552
	0.06681
	-1.50

	-1.40
	0.06811
	0.06944
	0.07078
	0.07215
	0.07353
	0.07493
	0.07636
	0.07780
	0.07927
	0.08076
	-1.40

	-1.30
	0.08226
	0.08379
	0.08534
	0.08691
	0.08851
	0.09012
	0.09176
	0.09342
	0.09510
	0.09680
	-1.30

	-1.20
	0.09853
	0.10027
	0.10204
	0.10383
	0.10565
	0.10749
	0.10935
	0.11123
	0.11314
	0.11507
	-1.20

	-1.10
	0.11702
	0.11900
	0.12100
	0.12302
	0.12507
	0.12714
	0.12924
	0.13136
	0.13350
	0.13567
	-1.10

	-1.00
	0.13786
	0.14007
	0.14231
	0.14457
	0.14686
	0.14917
	0.15151
	0.15386
	0.15625
	0.15866
	-1.00

	-0.90
	0.16109
	0.16354
	0.16602
	0.16853
	0.17106
	0.17361
	0.17619
	0.17879
	0.18141
	0.18406
	-0.90

	-0.80
	0.18673
	0.18943
	0.19215
	0.19489
	0.19766
	0.20045
	0.20327
	0.20611
	0.20897
	0.21186
	-0.80

	-0.70
	0.21476
	0.21770
	0.22065
	0.22363
	0.22663
	0.22965
	0.23270
	0.23576
	0.23885
	0.24196
	-0.70

	-0.60
	0.24510
	0.24825
	0.25143
	0.25463
	0.25785
	0.26109
	0.26435
	0.26763
	0.27093
	0.27425
	-0.60

	-0.50
	0.27760
	0.28096
	0.28434
	0.28774
	0.29116
	0.29460
	0.29806
	0.30153
	0.30503
	0.30854
	-0.50

	-0.40
	0.31207
	0.31561
	0.31918
	0.32276
	0.32636
	0.32997
	0.33360
	0.33724
	0.3409
	0.34458
	-0.40

	-0.30
	0.34827
	0.35197
	0.35569
	0.35942
	0.36317
	0.36693
	0.37070
	0.37448
	0.37828
	0.38209
	-0.30

	-0.20
	0.38591
	0.38974
	0.39358
	0.39743
	0.40129
	0.40517
	0.40905
	0.41294
	0.41683
	0.42074
	-0.20

	-0.10
	0.42465
	0.42858
	0.43251
	0.43644
	0.44038
	0.44433
	0.44828
	0.45224
	0.45620
	0.46017
	-0.10

	-0.00
	0.46414
	0.46812
	0.47210
	0.47608
	0.48006
	0.48405
	0.48803
	0.49202
	0.49601
	0.50000
	-0.00








Standard Normal Table (continued)
Areas Under the Standard Normal Curve


	z
	0.00
	0.01
	0.02
	0.03
	0.04
	0.05
	0.06
	0.07
	0.08
	0.09
	z

	0.00
	0.50000
	0.50399
	0.50798
	0.51197
	0.51595
	0.51994
	0.52392
	0.52790
	0.53188
	0.53586
	0.00

	0.10
	0.53983
	0.54380
	0.54776
	0.55172
	0.55567
	0.55962
	0.56356
	0.56749
	0.57142
	0.57535
	0.10

	0.20
	0.57926
	0.58317
	0.58706
	0.59095
	0.59483
	0.59871
	0.60257
	0.60642
	0.61026
	0.61409
	0.20

	0.30
	0.61791
	0.62172
	0.62552
	0.62930
	0.63307
	0.63683
	0.64058
	0.64431
	0.64803
	0.65173
	0.30

	0.40
	0.65542
	0.65910
	0.66276
	0.66640
	0.67003
	0.67364
	0.67724
	0.68082
	0.68439
	0.68793
	0.40

	0.50
	0.69146
	0.69497
	0.69847
	0.70194
	0.70540
	0.70884
	0.71226
	0.71566
	0.71904
	0.72240
	0.50

	0.60
	0.72575
	0.72907
	0.73237
	0.73565
	0.73891
	0.74215
	0.74537
	0.74857
	0.75175
	0.75490
	0.60

	0.70
	0.75804
	0.76115
	0.76424
	0.76730
	0.77035
	0.77337
	0.77637
	0.77935
	0.78230
	0.78524
	0.70

	0.80
	0.78814
	0.79103
	0.79389
	0.79673
	0.79955
	0.80234
	0.80511
	0.80785
	0.81057
	0.81327
	0.80

	0.90
	0.81594
	0.81859
	0.82121
	0.82381
	0.82639
	0.82894
	0.83147
	0.83398
	0.83646
	0.83891
	0.90

	1.00
	0.84134
	0.84375
	0.84614
	0.84849
	0.85083
	0.85314
	0.85543
	0.85769
	0.85993
	0.86214
	1.00

	1.10
	0.86433
	0.86650
	0.86864
	0.87076
	0.87286
	0.87493
	0.87698
	0.87900
	0.88100
	0.88298
	1.10

	1.20
	0.88493
	0.88686
	0.88877
	0.89065
	0.89251
	0.89435
	0.89617
	0.89796
	0.89973
	0.90147
	1.20

	1.30
	0.90320
	0.90490
	0.90658
	0.90824
	0.90988
	0.91149
	0.91309
	0.91466
	0.91621
	0.91774
	1.30

	1.40
	0.91924
	0.92073
	0.92220
	0.92364
	0.92507
	0.92647
	0.92785
	0.92922
	0.93056
	0.93189
	1.40

	1.50
	0.93319
	0.93448
	0.93574
	0.93699
	0.93822
	0.93943
	0.94062
	0.94179
	0.94295
	0.94408
	1.50

	1.60
	0.94520
	0.94630
	0.94738
	0.94845
	0.94950
	0.95053
	0.95154
	0.95254
	0.95352
	0.95449
	1.60

	1.70
	0.95543
	0.95637
	0.95728
	0.95818
	0.95907
	0.95994
	0.96080
	0.96164
	0.96246
	0.96327
	1.70

	1.80
	0.96407
	0.96485
	0.96562
	0.96638
	0.96712
	0.96784
	0.96856
	0.96926
	0.96995
	0.97062
	1.80

	1.90
	0.97128
	0.97193
	0.97257
	0.97320
	0.97381
	0.97441
	0.97500
	0.97558
	0.97615
	0.97670
	1.90

	2.00
	0.97725
	0.97778
	0.97831
	0.97882
	0.97932
	0.97982
	0.98030
	0.98077
	0.98124
	0.98169
	2.00

	2.10
	0.98214
	0.98257
	0.98300
	0.98341
	0.98382
	0.98422
	0.98461
	0.98500
	0.98537
	0.98574
	2.10

	2.20
	0.98610
	0.98645
	0.98679
	0.98713
	0.98745
	0.98778
	0.98809
	0.98840
	0.98870
	0.98899
	2.20

	2.30
	0.98928
	0.98956
	0.98983
	0.99010
	0.99036
	0.99061
	0.99086
	0.99111
	0.99134
	0.99158
	2.30

	2.40
	0.99180
	0.99202
	0.99224
	0.99245
	0.99266
	0.99286
	0.99305
	0.99324
	0.99343
	0.99361
	2.40

	2.50
	0.99379
	0.99396
	0.99413
	0.99430
	0.99446
	0.99461
	0.99477
	0.99492
	0.99506
	0.99520
	2.50

	2.60
	0.99534
	0.99547
	0.99560
	0.99573
	0.99585
	0.99598
	0.99609
	0.99621
	0.99632
	0.99643
	2.60

	2.70
	0.99653
	0.99664
	0.99674
	0.99683
	0.99693
	0.99702
	0.99711
	0.99720
	0.99728
	0.99736
	2.70

	2.80
	0.99744
	0.99752
	0.99760
	0.99767
	0.99774
	0.99781
	0.99788
	0.99795
	0.99801
	0.99807
	2.80

	2.90
	0.99813
	0.99819
	0.99825
	0.99831
	0.99836
	0.99841
	0.99846
	0.99851
	0.99856
	0.99861
	2.90

	3.00
	0.99865
	0.99869
	0.99874
	0.99878
	0.99882
	0.99886
	0.99889
	0.99893
	0.99896
	0.9990
	3.00

	3.10
	0.99903
	0.99906
	0.99910
	0.99913
	0.99916
	0.99918
	0.99921
	0.99924
	0.99926
	0.99929
	3.10

	3.20
	0.99931
	0.99934
	0.99936
	0.99938
	0.99940
	0.99942
	0.99944
	0.99946
	0.99948
	0.99950
	3.20

	3.30
	0.99952
	0.99953
	0.99955
	0.99957
	0.99958
	0.99960
	0.99961
	0.99962
	0.99964
	0.99965
	3.30

	3.40
	0.99966
	0.99968
	0.99969
	0.99970
	0.99971
	0.99972
	0.99973
	0.99974
	0.99975
	0.99976
	3.40

	3.50
	0.99977
	0.99978
	0.99978
	0.99979
	0.99980
	0.99981
	0.99981
	0.99982
	0.99983
	0.99983
	3.50




CHAPTER 5: Probabilistic Features of the Distributions of
Certain Sample Statistics


5.1 Introduction:
In this Chapter we will discuss the probability distributions of some statistics.
As we mention earlier, a statistic is measure computed form  the  random  sample.  As  the  sample  values  vary  from
sample to sample, the value of the statistic varies accordingly.
A  statistic  is  a  random  variable;  it  has  a  probability distribution, a mean and a variance.


5.2 Sampling Distribution:
The  probability  distribution  of  a  statistic  is  called  the sampling distribution of that statistic.
The sampling distribution of the statistic is used to make statistical inference about the unknown parameter.


5.3 Distribution of the Sample Mean:
(Sampling Distribution of the Sample Mean  X ):
Suppose  that  we  have  a  population  with  mean  µ  and
variance

σ 2 . Suppose that

X 1 , X

2 , K , X n

is a random sample of
size (n) selected randomly from this population. We know that the sample mean is:
n
    ∑ X i
X =    i =1         .
n
 (
1st sample
2nd sample
3
r
d sample
…
Last sample
Sample
 
values
28
30
34
34
17
31
20
31
40
28
14
31
25
27
32
.
.
.
.
17
32
29
31
30
Sample
 
mean
 
X
28.4
29.9
25.8
…
27.8
)Suppose that we select several random samples of size n=5.

- The  value  of  the  sample  mean  X    varies  from  random sample to another.
- The value of  X   is random and it depends on the random sample.
- The sample mean X  is a random variable.
- The probability distribution of  X   is called the sampling
distribution of the sample mean X .
- Questions:
o What is the sampling distribution of the sample mean
X ?
o What is the mean of the sample mean X ?
o What is the variance of the sample mean X ?
 (
X
)Some Results about Sampling Distribution of X : Result (1): (mean & variance of X )
If  X 1 , X 2 , K , X n

is  a  random  sample  of  size  n  from  any
distribution with mean

µ and variance σ 2 ; then:
1. The mean of  X   is:

µ = µ .
σ 2
 (
σ
) (
=
)2. The variance of  X  is:             2                   .
 (
σ
)X           n
 (
X
)3. The Standard deviation of  X  is call the standard error and
σ
 (
X
)is defined by:

σ  =      2

=    n .


Result (2): (Sampling from normal population)
If  X 1 , X 2 , K , X n

is a random sample of size n from a normal
population with mean µ and variance

σ 2 ; that is Normal (µ,σ 2 ),
then the sample mean has a normal distribution with

mean  µ
and variance

σ 2  / n , that is:

1.  X ~


Normal

⎛
⎜ µ,

σ 2  ⎞
⎟ .
⎝            n  ⎠
2. Z =  X − µ ~
σ /   n


Normal (0,1).


We use this result when sampling from normal distribution with known variance σ 2 .


Result (3):   (Central Limit Theorem: Sampling from Non- normal population)
Suppose that

X 1 , X 2 , K , X n

is a random sample of size n
from non-normal population with mean µ and variance

σ 2 . If
the sample size n is large  (n ≥ 30),

then the sample mean has
approximately a normal distribution with mean µ and variance
σ 2  / n , that is
1. X ≈


Normal

⎛
⎜ µ,

σ 2  ⎞
⎟


(approximately)
⎝            n  ⎠
2.  Z =  X − µ

≈ Normal (0,1)       (approximately)
σ /   n


Note:  “ ≈ ” means “approximately distributed”.
We use this result when sampling from non-normal distribution
with known variance σ 2

and with large sample size.


Result (4): (used when σ2 is unknown + normal distribution)
If  X 1 , X 2 , K , X n

is  a  random  sample  of  size  n  from  a

normal distribution with mean µ and unknown variance σ 2 ; that is Normal (µ,σ 2 ), then the statistic:
T =  X − µ
S /   n
has a t- distribution with

(n − 1)

degrees of freedom, where S is
the sample standard deviation given by:
n                     	
∑( X i

− X ) 2



We write:

S =    S 2  =

 i =1 	
n −1
T =  X − µ

~ t (n − 1)
S /   n
Notation: degrees of freedom = df = ν



The t-Distribution:  (Section 6.3. pp 172-174)
• Student's t distribution.
• t-distribution  is  a  distribution  of  a  continuous  random
variable.
• Recall that, if X1, X2, …, Xn is a random sample of size n from a normal distribution with mean µ and variance σ2, i.e. N(µ,σ2), then
Z =  X − µ ~N(0,1)
σ /   n
We can apply this result only when σ2 is known!
• If σ2 is unknown, we replace the population variance σ2
n                 	
∑ ( X i − X )2
with the sample variance

following statistic

S 2  = i =1 	
n − 1

to  have  the
T =  X − µ

Recall:

S /   n

If X1, X2, …, Xn  is a random sample of size n from a normal distribution with mean µ and variance σ2, i.e. N(µ,σ2),
then the statistic:
T =  X − µ
S /   n
has    a    t-distribution    with

(n −1)

degrees    of    freedom
( df

=ν = n −1 ), and we write T~ t(ν) or T~ t(n−1).
Note:
• t-distribution is a continuous distribution.
• The value of t random variable range from -∞ to +∞ (that
is, -∞<t<∞).
• The mean of t distribution is 0.
• It is symmetric about the mean 0.
• The shape of t-distribution is similar to the shape of the
standard normal distribution.
• t-distribution → Standard normal distribution as n → ∞.




Notation: (t α)














• t α = The t-value under which we find an area equal to α
= The t-value that leaves an area of α to the left.
• The value t α satisfies: P(T< t α) = α.
• Since the curve of the pdf of T~ t(ν) is symmetric about
0, we have
t1 − α = − t α
For example:     t0.35 = − t1−0.35  = − t0.65
t0.82 = − t1−0.86  = − t0.14
• Values of tα are tabulated in a special table for several
values of α and several values of degrees of freedom.
(Table E, appendix p. A-40 in the textbook).


Example:
Find the t-value with ν=14 (df) that leaves an area of:
(a)    0.95 to the left.
(b)    0.95 to the right.
Solution:
ν = 14   (df);  T~ t(14)
(a) The t-value that leaves an area of 0.95 to the left is
t0.95 = 1.761.





(b) The t-value that leaves an area of 0.95 to the right is t0.05 = − t 1 − 0.05   = − t 0.95    =  − 1.761



Note: Some t-tables contain values of α that are greater than or equal to 0.90. When we search for small values of α in these
tables, we may use the fact that:
t1 − α = − t α
Example:
For ν = 10 degrees of freedom (df), find t0.93   and t 0.07.
Solution:
t0.93 = (1.372+1.812)/2 = 1.592   (from the table)
t0.07 = − t1−0.07  = − t 0.93 = − 1.592  (using the rule: t1 − α = − t α)






Critical Values of the t-distribution (tα )

	ν=df
	t0.90
	t0.95
	t0.975
	t0.99
	t0.995

	1
	3.078
	6.314
	12.706
	31.821
	63.657

	2
	1.886
	2.920
	4.303
	6.965
	9.925

	3
	1.638
	2.353
	3.182
	4.541
	5.841

	4
	1.533
	2.132
	2.776
	3.747
	4.604

	5
	1.476
	2.015
	2.571
	3.365
	4.032

	6
	1.440
	1.943
	2.447
	3.143
	3.707

	7
	1.415
	1.895
	2.365
	2.998
	3.499

	8
	1.397
	1.860
	2.306
	2.896
	3.355

	9
	1.383
	1.833
	2.262
	2.821
	3.250

	10
	1.372
	1.812
	2.228
	2.764
	3.169

	11
	1.363
	1.796
	2.201
	2.718
	3.106

	12
	1.356
	1.782
	2.179
	2.681
	3.055

	13
	1.350
	1.771
	2.160
	2.650
	3.012

	14
	1.345
	1.761
	2.145
	2.624
	2.977

	15
	1.341
	1.753
	2.131
	2.602
	2.947

	16
	1.337
	1.746
	2.120
	2.583
	2.921

	17
	1.333
	1.740
	2.110
	2.567
	2.898

	18
	1.330
	1.734
	2.101
	2.552
	2.878

	19
	1.328
	1.729
	2.093
	2.539
	2.861

	20
	1.325
	1.725
	2.086
	2.528
	2.845

	21
	1.323
	1.721
	2.080
	2.518
	2.831

	22
	1.321
	1.717
	2.074
	2.508
	2.819

	23
	1.319
	1.714
	2.069
	2.500
	2.807

	24
	1.318
	1.711
	2.064
	2.492
	2.797

	25
	1.316
	1.708
	2.060
	2.485
	2.787

	26
	1.315
	1.706
	2.056
	2.479
	2.779

	27
	1.314
	1.703
	2.052
	2.473
	2.771

	28
	1.313
	1.701
	2.048
	2.467
	2.763

	29
	1.311
	1.699
	2.045
	2.462
	2.756

	30
	1.310
	1.697
	2.042
	2.457
	2.750

	35
	1.3062
	1.6896
	2.0301
	2.4377
	2.7238

	40
	1.3030
	1.6840
	2.0210
	2.4230
	2.7040

	45
	1.3006
	1.6794
	2.0141
	2.4121
	2.6896

	50
	1.2987
	1.6759
	2.0086
	2.4033
	2.6778

	60
	1.2958
	1.6706
	2.0003
	2.3901
	2.6603

	70
	1.2938
	1.6669
	1.9944
	2.3808
	2.6479

	80
	1.2922
	1.6641
	1.9901
	2.3739
	2.6387

	90
	1.2910
	1.6620
	1.9867
	2.3685
	2.6316

	100
	1.2901
	1.6602
	1.9840
	2.3642
	2.6259

	120
	1.2886
	1.6577
	1.9799
	2.3578
	2.6174

	140
	1.2876
	1.6558
	1.9771
	2.3533
	2.6114

	160
	1.2869
	1.6544
	1.9749
	2.3499
	2.6069

	180
	1.2863
	1.6534
	1.9732
	2.3472
	2.6034

	200
	1.2858
	1.6525
	1.9719
	2.3451
	2.6006

	∞
	1.282
	1.645
	1.960
	2.326
	2.576




Application:


Example: (Sampling distribution of the sample mean)
Suppose that the time duration of a minor surgery is approximately normally distributed with mean equal to 800 seconds and a standard deviation of 40 seconds. Find the probability that a random sample of 16 surgeries will have average time duration of less than 775 seconds.
Solution:
X= the duration of the surgery
µ=800 ,  σ=40 ,
X~N(800, 1600)

σ 2   = 1600
Sample size: n=16
Calculating   mean,   variance,   and   standard   error   (standard
deviation) of the sample mean X :
Mean of  X :

Variance of X :

µ X  = µ =800
σ=2         1600
σ 2   =       =          = 100
X           n       16

 (
:
)Standard error (standard deviation) of

X    σ
 (
σ
)X

= σ
n

=   40  = 10
16
Using the central limit theorem,  X   has a normal distribution
2
 (
µ
)with mean   X

= 800

and variance    X
σ 2

= 100 , that is:
X ~ N(µ,
n

)=N(800,100)
⇔ Z =  X − µ = X − 800 ~N(0,1)
σ /   n        10
The probability that a random sample of 16 surgeries will have an average time duration that is less than 775 seconds equals to:

P( X

< 775) = P⎛ X

− µ <

775 − µ ⎞
 (
P
)⎟   =

⎛  X − 800
⎜                            <

775 − 800 ⎞
⎟
 (
⎜
)⎝ σ /   n

σ /   n  ⎠

⎝         10

10      ⎠
= P⎛ Z < 775 − 800 ⎞   =

P(Z < −2.50)


= 0.0062
⎜                                             ⎟
⎝                        10      ⎠




Example:
If the mean and standard deviation of serum iron values for healthy mean are 120 and 15 microgram/100ml, respectively, what is the probability that a random sample of size 50 normal men will yield a mean between 115 and 125 microgram/100ml? Solution:
X= the serum iron value
µ=120 ,  σ=15 ,
X~N(120, 225)

σ 2   = 225
Sample size: n=50
Calculating   mean,   variance,   and   standard   error   (standard
deviation) of the sample mean X :
Mean of  X :

Variance of X :

µ X  = µ =120
σ=2         225
 (
σ
)σ 2   =       =         = 4.5
X           n       50
 (
X
)Standard error (standard deviation) of

X : σ

= σ
n

=  15   = 2.12
50
Using the central limit theorem,  X   has a normal distribution
2
 (
µ
) (
X
)with mean

= 120

and variance    X
σ 2

= 4.5 , that is:
X ~ N(µ,
n

)=N(120,4.5)
⇔ Z =  X − µ

=  X − 120 ~N(0,1)
σ /   n

2.12
The probability that a random sample of 50 men will yield a mean between 115 and 125 microgram/100ml equals to:
⎛ 115 − µ

X − µ

125 − µ ⎞
P(115 < X

< 125) = P⎜
⎝  σ /

<
n     σ /

<              ⎟
n     σ /   n ⎠

P⎛ 115 − 120

 X − µ

125 − 120 ⎞  = P(− 2.36 < Z < 2.36)
=    ⎜
⎝         2.12

<              <
σ /   n

⎟
2.12    ⎠
=  P(Z < 2.36)

- P(Z

< −2.36)
= 0.9909 – 0.0091
= 0.9818


5.4  Distribution  of  the  Difference  Between  Two  Sample
Means ( X 1 − X 2  ):
Suppose that we have two populations:
 (
1
)• 1-st population with mean µ1 and variance σ 2
2
• 2-nd population with mean µ2 and variance σ2
• We   are   interested   in   comparing   µ1     and   µ2,   or
equivalently,  making  inferences  about  the  difference between the means (µ1−µ2).
• We independently select a random sample of size n1 from
the 1-st population and another random sample of size n2
from the 2-nd population:
 (
S
) (
1
)• Let

X1   and    2

be  the  sample  mean  and  the  sample
variance of the 1-st sample.
 (
S
) (
2
)• Let

X 2    and    2

be  the  sample  mean  and  the  sample
variance of the 2-nd sample.
• The  sampling  distribution  of
inferences about µ1−µ2.


X1 − X 2



is  used  to  make







The sampling distribution of
Result:

X1 − X 2 :
The mean, the variance and the standard deviation of
are:

X1 − X 2
Mean of

X1 − X 2

is:

µ
X1 − X 2

= µ1 − µ2


Variance of


X1 − X 2 is:

σ 2
X1 − X 2

2             2
 (
σ
) (
σ
)=   1   +    2
n1          n2
Standard error (standard) deviation of

X1 − X 2  is:
2           2
σ        =  σ 2           =

σ1   + σ 2 


Result:

X 1 − X 2

X 1 − X 2

n1        n2
If   the   two   random   samples   were   selected   from   normal distributions  (or  non-normal  distributions  with  large  sample
 (
σ
) (
2
) (
1
)sizes) with known variances     2

and

σ 2 , then the difference
between the sample means ( X1 − X 2 )  has a normal distribution
 (
1
) (
1               
 
2
)with mean ( µ1 − µ2 ) and variance (

(σ 2

/ n ) + (σ 2

/ n2 ) ) , that is:
⎛                             σ 2

σ 2  ⎞
• X 1

− X 2

~  N ⎜ µ1

− µ2

,      1   +         2   ⎟
⎝                               n1

n2  ⎠


Z = ( X 1  − X 2 ) − (µ1 − µ2 )
•            σ 2        σ 2

~ N(0,1)
     1    +      2  


Application:

n1          n2


Example:
Suppose it has been established that for a certain type of client (type A) the average length of a home visit by a public health nurse is 45 minutes with standard deviation of 15 minutes, and that for second type (type B) of client the average home visit is
30 minutes long with   standard deviation of 20 minutes. If a nurse  randomly  visits  35  clients  from  the  first  type  and  40

clients from the second type, what is the probability that the average length of home visit of first type will be greater than the average length of home visit of second type by 20 or more minutes?
Solution:
For the first type:
µ1 = 45
σ 1   = 15
 (
1
)σ 2  = 225
n1  = 35
For the second type:
µ2  = 30
σ 2  = 20
 (
2
)σ 2  = 400
n2  = 40
The mean, the variance and the standard deviation of
are:

X1 − X 2


Mean of

X1 − X 2

is:
µ
X1 − X 2


= µ1 − µ2



= 45 − 30 = 15
Variance of

X1 − X 2 is:
2              2
σ 2       
X1 − X 2

= σ1  + σ 2   =

225 + 400 = 16.4286
n1          n2

35      40
Standard error (standard) deviation of

X1 − X 2  is:
σ      =
X1 − X 2

σ 2             =
X 1 − X 2

16.4286 = 4.0532
The sampling distribution of

X1 − X 2

is:
X 1 − X 2

~  N (15 , 16.4286)


Z = ( X 1 − X 2 ) − 15
16.4286


~ N(0,1)
The probability that the average length of home visit of first type will be greater than the average length of home visit of second type by 20 or more minutes is:

⎛
⎜
⎜ ( X



− X  ) − (µ



− µ )



20 − (µ

⎞
⎟
− µ ) ⎟
P( X 1

− X 2

> 20) = P ⎜                       1             2                1            2     >                                1            2     ⎟
⎜                       σ 2        σ 2

σ 2        σ 2       ⎟
⎜              1    +      2  

     1   +         2        ⎟
⎝
P ⎛ Z > 20 −15 ⎞

n1          n2

n1          n2        ⎠
=   ⎜                                      ⎟
⎝               4.0532 ⎠

= P(Z>1.23) =1 – P(Z<1.23)
= 1 – 0.8907
= 0.1093


5.5 Distribution of the Sample Proportion ( pˆ  ):





„ For the population:
N (A) = number of elements in the  population
with a specified characteristic “A”
N = total number of elements in the population
(population size) The population proportion is
N (A)
p =    N                (p is a parameter)
„ For the sample:
n(A) = number of elements in the  sample with the same
characteristic “A”
n  = sample size
The sample proportion is
n(A)
pˆ =
n
„ The sampling distribution of

( pˆ

pˆ

is a statistic)

is used to make inferences

about p.


Result:
The  mean  of  the  sample  proportion  ( pˆ
proportion (p); that is:



)  is  the  population
µ pˆ   = p
The variance of the sample proportion ( pˆ


) is:
 (
σ
) (
=
)2     p(1 − p ) =
pˆ                  n

 pq
n


.          (where q=1 –p)
The standard error (standard deviation) of the sample proportion
( pˆ

) is:




σ pˆ   =


p(1 − p )        pq
=
n              n
Result:
For   large   sample   size   ( n ≥ 30, np > 5, nq > 5 ),   the   sample
proportion ( pˆ


) has approximately a normal distribution with

mean

µ pˆ   = p


 (
2
)and a variance

σ pˆ   =


pq / n , that is:
 (
⎜
)pˆ ~ N ⎛ p ,

pq ⎞
⎟



(approximately)
⎝             n  ⎠
pˆ − p





Example:

Z =            ~ N (0 ,1)
pq
n

(approximately)
Suppose that 45% of the patients visiting a certain clinic are females. If a sample of 35 patients was selected at random, find the probability that:
1. the proportion of females in the sample will be greater than 0.4.
2. the proportion of females in the sample will be between
0.4 and 0.5.
Solution:
•  .n = 35 (large)
•  p = The population proportion of females =

 45  = 0.45
100

•   pˆ


= The sample proportion
(proportion of females in the sample)
•  The mean of the sample proportion ( pˆ

) is p = 0.45
•  The variance of the sample proportion ( pˆ


) is:
p(1 − p)
=
n

pq =
n

0.45(1 − 0.45)
35

= 0.0071.
•  The  standard  error  (standard  deviation)  of  the  sample
proportion ( pˆ

) is:


p(1 − p )
=
n





0.0071 =0.084
•  n ≥ 30,

np = 35 × 0.45 = 15.75 > 5, nq = 35 × 0.55 = 19.25 > 5
1. The probability that the sample proportion of females ( pˆ )
will be greater than 0.4 is:
⎛                                                                           ⎞
⎜                                                                           ⎟
⎜            pˆ − p     <    0.4 − p    ⎟
P( pˆ

> 0.4) = 1 – P( pˆ

< 0.4) = 1 – P ⎜
⎜

 p(1 − p )

 p(1 − p ) ⎟
⎟
⎝                 n                   n      ⎠
⎛                                                                ⎞
⎜                                                                ⎟
= 1-P ⎜ Z <       0.4 − 0.45      ⎟

=  1 - P (Z < − 0.59)
⎜                    0.45(1 − 0.45) ⎟
⎜                                                                ⎟
⎝                                     35          ⎠
= 1 – 0.2776 = 0.7224
2. The probability that the sample proportion of females ( pˆ )
will be between 0.4 and 0.5 is:
P(0.4 <  pˆ

< 0.5) = P( pˆ
⎛
⎜

< 0.5) – P( pˆ

< 0.4)
⎞
⎟
⎜            pˆ − p     <    0.5 − p    ⎟
= P ⎜
⎜

 p(1 − p )

 p(1 − p ) ⎟
⎟

– 0.2776
⎝                 n                   n      ⎠
⎛                                                                ⎞
⎜                                                                ⎟
⎜ Z <       0.5 − 0.45      ⎟
= P ⎜
⎜

0.45(1 − 0.45) ⎟
⎟

– 0.2776
⎝                                     35          ⎠

= P (Z < 0.59)

– 0.2776
= 0.7224 – 0.2776
= 0.4448


5.6  Distribution  of  the  Difference  Between  Two  Sample
Proportions ( pˆ1 −

pˆ 2  ):



·
independent
¹

Suppose that we have two populations:
• p1   =  proportion  of  elements  of  type  (A)  in  the  1-st
population.
• p2   =  proportion  of  elements  of  type  (A)  in  the  2-nd
population.
• We are interested in comparing p1 and p2, or equivalently, making inferences about p1 − p2.
• We independently select a random sample of size n1 from
the 1-st population and another random sample of size n2
from the 2-nd population:
• Let X1 = no. of elements of type (A) in the 1-st sample.
• Let X2 = no. of elements of type (A) in the 2-nd sample.
 X 1
• pˆ1 =
 (
n
)1

=  sample proportion of the 1-st sample


• pˆ 2 =

 X 2 
n2



= sample proportion of the 2-nd sample
• The sampling distribution of

pˆ1 −

pˆ 2


is used to make
inferences about

p1 − p2 .



The sampling distribution of
Result:

pˆ1 −

pˆ 2  :
The  mean,  the  variance  and  the  standard  error  (standard

deviation) of

pˆ1 −

pˆ 2


are:
• Mean of

pˆ1 −

pˆ 2


is:
 (
1      
 
2
)µ pˆ − pˆ

= p1 − p2
• Variance of

pˆ1 −

pˆ 2 is:
2




 p  q   +  p  q 	
 (
1       
 
2
)σ pˆ  − pˆ    =   1    1              2     2
n1                  n2
• Standard error (standard deviation) of

pˆ1 −

pˆ 2 is:
 (
1       
 
2
)σ pˆ  − pˆ    =

 p1  q1    +  p2  q2 	

• q1  = 1 − p1



and

n1                  n2
q2  = 1 − p2


Result:
For large samples sizes
( n1  ≥ 30, n2

≥ 30, n1 p1

> 5, n1q1

> 5, n2 p2

> 5, n2 q2

> 5 )  ,  we  have

that

pˆ1 −

pˆ 2


has approximately normal
 (
1       
 
2
)2


distribution with mean
 p  q   +  p  q 	
 (
1      
 
2
)µ pˆ − pˆ

= p1 − p2

and variance

σ pˆ  − pˆ    =   1    1
n1

2     2    , that is:
n2
⎛                             p  q

p  q  ⎞
pˆ1

− pˆ 2

~ N ⎜ p1

− p2

,     1     1  +        2      2  ⎟

(Approximately)
⎝                                 n1

n2      ⎠
Z = ( pˆ1 − pˆ 2 ) − ( p1 − p2 )
 p1  q1  +  p2   q2 



~ N(0,1)    (Approximately)
n1                 n2

Example:
Suppose   that   40%   of   Non-Saudi   residents   have   medical insurance and 30% of Saudi residents have medical insurance in a certain city. We have randomly and independently selected a sample of 130 Non-Saudi residents and another sample of 120
Saudi  residents.  What  is  the  probability  that  the  difference

between the sample proportions, and 0.2?
Solution:

pˆ1 −

pˆ 2 , will be between 0.05
p1 = population proportion of non-Saudi with medical insurance.
p2 = population proportion of Saudi with medical insurance.
pˆ1 = sample proportion of non-Saudis with medical insurance.
pˆ 2 = sample proportion of Saudis with medical insurance.


p1 = 0.4              n1=130
p2 = 0.3              n2=120


 (
1      
 
2
)µ pˆ − pˆ

= p1 −

p2 =0.4 -0.3 = 0.1
 (
σ
)2
pˆ 1 − pˆ 2   =

 p q   +  p  q    =

(0.4)(0.6)

+ (0.3)(0.7)


= 0.0036
1    1              2     2
n1                  n2

130

120
 (
1       
 
2
)σ pˆ  − pˆ    =

 p1  q1  
n1

+  p2 q2     =
n2


0.0036


= 0.06
The   probability   that   the   difference   between   the   sample

proportions,

pˆ1 −

pˆ 2 , will be between 0.05 and 0.2 is:


P(0.05 < pˆ1 −

pˆ 2 <0.2) = P(

pˆ1 −

pˆ 2 <0.2)  – P( pˆ1 −

pˆ 2 <0.05)


⎛                                                                                                                            ⎞
⎜                                                                                                                            ⎟
⎜ ( pˆ 1 − pˆ 2 ) − ( p1  − p2 ) <  0.2 − ( p1 − p2 )   ⎟
= P ⎜
⎜


 p1   q1  +  p2   q2 

⎟
 (
 
p
 
 
q
     
 
 
p
  
 
q
) (
⎠
)1     1  +    2      2   ⎟
 (
⎝
)⎜                   n1                 n2

n1                 n2        ⎟

⎛                                                                                                                            ⎞
⎜                                                                                                                            ⎟
⎜ ( pˆ 1 − pˆ 2 ) − ( p1  − p2 ) <  0.05 − ( p1 − p2 ) ⎟
– P ⎜
⎜


 p1   q1  +  p2   q2 

⎟
 (
 
p
 
 
q
     
 
 
p
  
 
q
) (
⎠
)1     1  +    2      2   ⎟
 (
⎝
)⎜                   n1                 n2

n1                 n2        ⎟


⎛ Z < 0.2 − 0.1 ⎞

⎛ Z < 0.05 − 0.1 ⎞
= P ⎜
⎝


0.06

⎟   - P ⎜
⎠                 ⎝

⎟
0.06    ⎠
= P (Z < 1.67) - P (Z < −0.83)
= 0.9515 – 0.2033
= 0.7482

CHAPTER  6:  Using  Sample  Data  to  Make  Estimations
About Population Parameters


6.1 Introduction:
Statistical Inferences: (Estimation and Hypotheses Testing)
It is the procedure by which we reach a conclusion about a population on the basis of the information contained in a sample
drawn from that population.


There are two main purposes of statistics;
• Descriptive Statistics: (Chapter  1  &  2):  Organization  &
summarization of the data
• Statistical   Inference:   (Chapter   6   and   7):   Answering
research   questions   about   some   unknown   population
parameters.
(1) Estimation: (chapter 6)
Approximating (or estimating) the actual values of the unknown parameters:
- Point Estimate: A point estimate is single value used to estimate the corresponding population parameter.
- Interval Estimate (or Confidence Interval): An interval estimate consists of two numerical values defining a range of values that most likely includes the parameter being estimated with a specified degree of confidence.
(2) Hypothesis Testing: (chapter 7)
Answering research questions about the unknown parameters of the population (confirming or denying some conjectures or statements about the unknown parameters).

6.2 Confidence Interval for a Population Mean (µ) :

In this section we are interested in estimating the mean of a certain population (µ ).





Population:
Population Size = N

Sample:
Sample Size = n
Population Values:

X1 , X 2 ,K, X N
N
∑ X i


Sample values:

x1 , x2 ,K, xn
n
x
  i =1 	

   ∑ i
Population Mean: µ =


Population Variance: σ 2

N
N
 (
2
)∑(X i  − µ )
=  i =1

Sample Mean:

X  =   i =1 	
n
 (
i
) (
n
)∑(x


 (
2
)− x)
N                 Sample Variance:

S 2   =   i =1 	
n − 1


(i) Point Estimation of µ:
A point estimate of the mean is a single number used to estimate (or approximate) the true value of µ .
- Draw a random sample of size n from the population:
- x1 , x2 ,K, xn

- Compute the sample mean:

X = 1

n
∑ xi

Result:
The sample mean




X = 1




n
∑ xi

n i =1


is a "good" point estimator of the

population mean ( µ ).

n i =1

(ii) Confidence Interval (Interval Estimate) of µ:
An interval estimate of  µ is an interval (L,U) containing
the true value of µ "with a probability of 1 − α ".


* 1 − α

= is called the confidence coefficient (level)
* L = lower limit of the confidence interval
* U =  upper limit of the confidence interval

Result: (For the case when σ is known)
(a) If

X 1 , X 2 K , X n

is a random sample of size n from a normal
distribution with mean µ and known variance σ 2
A (1 − α )100% confidence interval for µ is:

, then:
 (
σ
)X ± Z    α      X
1 −
2
 σ
X ± Z   α
1− 2       n
⎛                                                                                              ⎞
⎜ X − Z

σ  ,  X + Z        σ ⎟
 (
⎝                         
 
2
)⎜                   1− α    n

1− α        ⎟
 (
n
)2           ⎠
 (
n
) σ
X − Z   α
1 −
2

< µ <

 σ
 (
n
)X + Z   α
1 −
2


(b) If

X 1 , X 2 K , X n

is a random sample of size n from a non-
normal distribution with mean µ and known variance σ 2
if the sample size n is large (n ≥ 30), then:

, and
An approximate (1 − α )100% confidence interval for µ is:
 (
σ
)X ± Z    α      X
1 −
2
 σ
X ± Z   α
1− 2       n
⎛                                                                                              ⎞
⎜ X − Z

σ  ,  X + Z        σ ⎟
 (
⎝                         
 
2
)⎜                   1− α    n

1− α        ⎟
 (
n
)2           ⎠
 (
n
) σ
X − Z   α
1 −
2

< µ <

 σ
 (
n
)X + Z   α
1 −
2

Note that:
1. We are (1 − α )100% confident that the true value of µ belongs

to the interval

( X − Z    σ

,  X + Z    σ ) .
 (
 
 
) (
α
) (
α
)1− 2       n

1− 2       n
 (
n
)σ
2. Upper limit of the confidence interval =


3. Lower limit of the confidence interval =

X + Z    α
1−
2
 (
α
)X − Z    σ


4.  Z   α
1−
2



= Reliability Coefficient
σ

1− 2       n
5.   Z   α ×
1−
2

= margin of error = precision of the estimate
n
6. In general the interval estimate (confidence interval) may be expressed as follows:
 (
σ
)X ± Z    α      X
1 −
2
estimator ± (reliability coefficient) × (standard Error)

estimator ± margin of error


6.3 The t Distribution: (Confidence Interval Using t)
We   have   already   introduced   and   discussed   the   t distribution.
Result: (For the case when σ is unknown + normal population)
If    X 1 , X 2 K , X n

is a random sample of size n from a normal
distribution with mean

µ and unknown variance σ 2

, then:
A (1 − α )100% confidence interval for µ is:
 (
X
)X ± t   α
1−
2
X ± t

σˆ

  S  
α
1 − 2         n
⎛                               S                      S  ⎞
 (
X
) (
⎜
)⎜         − t    α
⎝                1 − 2

, X + t    α         ⎟
 (
n
) (
⎟
)n            1 − 2             ⎠



where the degrees of freedom is:
df = ν = n-1.
Note that:
1. We are (1 − α )100% confident that the true value of µ belongs
 (
S
) (
S
)⎛                                                                                     ⎞
⎜                                                                                     ⎟
to the interval

⎜ X − t − α

, X + t   α
n             −

n ⎟ .
⎝                1   2
S

1   2             ⎠
 (
X
)2.  σˆ   =
n

(estimate of the standard error of X )
3. t   α
1−
2

= Reliability Coefficient
4. In this case, we replace σ by S

and Z by t.
5. In general the interval estimate (confidence interval) may be expressed as follows:
Estimator ± (Reliability Coefficient) × (Estimate of the Standard Error)
 (
X
)X ± t   α  σˆ
1−
2
Notes: (Finding Reliability Coefficient)
 (
−
)(1) We find the reliability coefficient  Z  α
1
2
follows:

from the Z-table as



 (
−
)(2) We find the reliability coefficient  t   α
1
2
follows: (df = ν = n-1)

from the t-table as



Example:
Suppose that Z ~ N(0,1). Find Z   α
1−
2



for the following cases:
(1)  α =0.1         (2)  α =0.05       (3)  α =0.01
Solution:
(1) For α =0.1:
1 − α
2

= 1 − 0.1 = 0.95
2

⇒    Z    α   = Z0.95 = 1.645
1−
2
(2) For α =0.05:
1 − α
2

= 1 − 0.05 = 0.975
2

⇒    Z    α   = Z0.975 = 1.96.
1−
2
(3) For α =0.01:
1 − α
2

= 1 − 0.01 = 0.995
2

⇒    Z    α   = Z0.995 = 2.575.
1 −
2





Example:
 (
1
 
−
)Suppose that t ~ t(30). Find t  α
2
Solution:
df = ν = 30



for α =0.05.
1 − α
2

= 1 − 0.05 = 0.975
2

t   α  = t0.975
 (
⇒
)1−
2

= 2.0423


Example:  (The case where σ 2

is known)
Diabetic ketoacidosis is a potential fatal complication of diabetes mellitus throughout the world and is characterized in part  by  very  high  blood  glucose  levels.  In  a  study  on  123 patients living in Saudi Arabia of age 15 or more who were admitted for diabetic ketoacidosis, the mean blood glucose level was 26.2 mmol/l. Suppose that the blood glucose levels for such patients have a normal distribution with a standard deviation of
3.3 mmol/l.
(1) Find a point estimate for the mean blood glucose level of such diabetic ketoacidosis patients.
(2) Find a 90% confidence interval for the mean blood glucose level of such diabetic ketoacidosis patients.
Solution:
Variable = X = blood glucose level (quantitative variable). Population = diabetic ketoacidosis patients in Saudi Arabia of
age 15 or more.
Parameter of interest is:

µ = the mean blood glucose level.
Distribution is normal with standard deviation σ

= 3.3 .
σ 2   is known (σ 2  = 10.89 )
X ~ Normal( µ , 10.89)
µ = ?? (unknown- we need to estimate µ )
Sample size:

n = 123

(large)
Sample mean:

X = 26.2
(1)  Point Estimation:
We need to find a point estimate for µ .
X = 26.2
µ ≈ 26.2

is a point estimate for µ .

(2)  Interval Estimation (Confidence Interval = C. I.): We need to find 90% C. I. for µ .
90% =  (1 − α )100%
1 − α

= 0.9 ⇔ α

= 0.1 ⇔  α
2

= 0.05

⇔  1− α
2

= 0.95
The reliability coefficient is:

Z  α  =
1−

Z 0.95

= 1.645
2
90% confidence interval for µ is:

⎛
⎜ X − Z

 σ  ,

X + Z

 σ ⎞
⎜                   1 − α
⎝                          2
⎛

n

3.3

1 − α
 (
n
)2

⎟
 (
⎟
)⎠
3.3  ⎞
⎜ 26.2 − (1.645)
⎝


123

, 26.2 + (1.645)     ⎟
123 ⎠
(26.2 − 0.4894714 ,

26.2 + 0.4894714)
(25.710529 , 26.689471)
We are 90% confident that the true value of the mean µ lies in
the interval

(25.71 , 26.69), that is:
25.71 <

µ < 26.69


Note: for this example even if the distribution is not normal, we may use the same solution because the sample size n=123 is large.


Example:  (The case where σ 2

is unknown)
A study was conducted to study the age characteristics of Saudi  women  having  breast  lump.  A  sample  of  121  Saudi women gave a mean of 37 years with a standard deviation of 10 years.  Assume  that  the  ages  of  Saudi  women  having  breast lumps are normally distributed.
(a) Find a point estimate for the mean age of Saudi women having breast lumps.
(b) Construct a 99% confidence interval for the mean age of
Saudi women having breast lumps
Solution:
X  =  Variable  =  age  of  Saudi  women  having  breast  lumps
(quantitative variable).
Population = All Saudi women having breast lumps.
Parameter of interest is:

having breast lumps. X ~ Normal( µ , σ 2 )

µ =  the age mean of Saudi women
µ = ?? (unknown- we need to estimate µ )
σ 2    = ?? (unknown)
Sample size: Sample mean:

n = 121
X = 37

Sample standard deviation:

S = 10
Degrees of freedom: df =ν =121 – 1= 120
(a)  Point Estimation: We need to find a point estimate for µ .
X = 37
µ ≈ 37

is a "good" point estimate for µ .
years


(b) Interval Estimation (Confidence Interval = C. I.): We need to find 99% C. I. for µ .
99% =  (1 − α )100%
1 − α

= 0.99 ⇔ α

= 0.01  ⇔

α = 0.005
2

⇔  1− α
2

= 0.995
ν = df = 120
The reliability coefficient is:


t   α = t0.995
1−


= 2.617
2



99% confidence interval for µ is:
X ± t   α
1 −
2



  S  

n











Another Way:

37 ± (2.617)   10  
121
37 ± 2.38
(37 − 2.38 , 37 + 2.38)
(34.62 , 39.38)
⎛
 (
S
)⎜ X − t    α

S   , X + t            ⎞
 (
n
)⎜                1 −
⎝                       2
 (
α
) (
⎟
)⎛                                           10

1 −                 ⎟
 (
n
)2             ⎠
10   ⎞
⎜ 37 − (2.617)
⎝


121

, 37 + (2.617)     ⎟
121 ⎠
(37 − 2.38 , 37 + 2.38)

(34.62 , 39.38)
We are 99% confident that the true value of the mean µ lies in
the interval

(34.61 , 39.39), that is:
34.62 <

µ  < 39.38


6.4  Confidence  Interval  for  the  Difference  between  Two
Population Means (µ1−µ2):


Suppose that we have two populations:
2
• 1-st population with mean µ1 and variance σ1
2
• 2-nd population with mean µ2 and variance σ2
• We   are   interested   in   comparing   µ1     and   µ2,   or
equivalently,  making  inferences  about  the  difference between the means (µ1−µ2).
• We independently select a random sample of size n1 from
the 1-st population and another random sample of size n2
from the 2-nd population:
 (
S
) (
1
)• Let

X1   and    2

be  the  sample  mean  and  the  sample
variance of the 1-st sample.
 (
S
) (
2
)• Let

X 2    and    2

be  the  sample  mean  and  the  sample
variance of the 2-nd sample.
• The  sampling  distribution  of
inferences about µ1−µ2.


X1 − X 2



is  used  to  make







Recall:
1. Mean of



X1 − X 2



is:




 (
µ
)X1 − X 2


= µ1 − µ2


2. Variance of


X1 − X 2



is:

σ 2
X1 − X 2

2             2
 (
σ
) (
σ
)=   1   +    2
n1          n2


3. Standard error of


X1 − X 2



is:


σ      =
 (
σ
)X1 − X 2


 (
σ
)2              2
1   +    2
n1          n2
4.  If  the  two  random  samples  were  selected  from  normal distributions  (or  non-normal  distributions  with  large  sample
 (
σ
) (
2
) (
1
)sizes) with known variances     2

and

σ 2 , then the difference
between the sample means ( X1 − X 2 )  has a normal distribution
 (
1
) (
1               
 
2
)with mean ( µ1 − µ2 ) and variance (

(σ 2

/ n ) + (σ 2

/ n2 ) ) , that is:
⎛                             σ 2

σ 2  ⎞
• X 1

− X 2

~  N ⎜ µ1

− µ2

,     1   +         2   ⎟
⎝                               n1

n2  ⎠


Z = ( X 1  − X 2 ) − (µ1 − µ2 )
•            σ 2        σ 2

~ N(0,1)
     1    +      2  
n1          n2


Point Estimation of µ1−µ2:
Result:
X1 − X 2

is a "good" point estimate for µ1−µ2.


Interval Estimation (Confidence Interval) of µ1−µ2:
We will consider two cases.
 (
1
) (
2
)(i) First Case: σ 2

and σ 2

are known:
 (
σ
) (
σ
) (
1
) (
2
)If    2

and    2

are known, we use the following result to
find an interval estimate for µ1−µ2.
Result:
A (1−α)100% confidence interval for µ1−µ2 is:
( X 1 − X 2 ) ± Z   α
1−
2

σ
X1 − X 2

( X 1 − X 2 ) ± Z   α
1−
2

2
 (
σ
)     1  
n1

2
 (
σ
)+      2  
n2
⎛        


2             2                  	

2             2  ⎞
⎜ ( X

− X  ) − Z

σ1  + σ 2      ,

( X  − X

) + Z

σ1  + σ 2   ⎟
⎜         1            2
⎝

1−α
 (
n
) (
n
)2           1             2
σ 2       σ 2

1            2             1−α
2

n1         n2   ⎟
 (
⎠
)σ 2       σ 2
( X 1 − X 2 ) − Z   α
1−

1   +    2
n      n

< µ1 − µ2 <

( X 1 − X 2 ) + Z   α
1−

1   +    2
n      n
2           1             2

2           1             2
Estimator ± (Reliability Coefficient) × (Standard Error)

(ii) Second Case:
Unknown equal Variances: (σ 2 =σ 2 =σ2 is unknown):
1          2
If σ 2

and σ 2

are equal but unknown (σ 2 =σ 2 =σ2), then the
1                    2                                                                          1          2
pooled estimate of the common variance σ2 is
(n  − 1)S 2 + (n

− 1)S 2
 (
p
)S 2  =      1            1            2             2  


 (
S
) (
1
)where    2

n1 + n2 − 2
 (
S
) (
2
)is  the  variance  of  the  1-st  sample  and    2



is  the

 (
S
) (
p
)variance of the 2-nd sample. The degrees of freedom of   2  is df = ν = n1 + n2 − 2.
We  use  the  following  result  to  find  an  interval  estimate  for
µ1−µ2   when we have normal populations with unknown and
equal variances.
Result:
A (1−α)100% confidence interval for µ1−µ2 is:
S 2        S 2
X  − X    ± t

     p   +      p 
(   1            2 )

1−α
2


n1         n2
⎛         


S 2         S 2                   	

S 2        S 2  ⎞
⎜ ( X

− X  ) − t

     p   +         p     ,

( X  − X

) + t

     p  +         p   ⎟
⎜         1             2
⎝

1−α
2

n1          n2

1             2           1−α
 (
⎠
)2

n1          n2   ⎟
where    reliability    coefficient    t   α
1−
2

is    the    t-value    with
df=ν=n1+n2−2 degrees of freedom.

 (
1
) (
2
)Example: (1st Case: σ 2

and σ 2

are known)
An  experiment  was  conducted  to  compare  time  length

(duration time) of two types of surgeries (A) and (B). 75 surgeries of type (A) and 50 surgeries of type (B) were performed. The average time length for (A) was 42 minutes and the average for (B) was 36 minutes.
(1)  Find  a  point  estimate  for  µA−µB,  where  µA   and  µB   are
population means of the time length of surgeries of type (A) and
(B), respectively.
(2) Find a 96% confidence interval for µA−µB. Assume that the
population standard deviations are 8 and 6 for type (A) and (B),
respectively.
Solution:
Surgery                      Type (A)   Type (B)
Sample Size
Sample Mean
Population Standard Deviation

nA   = 75
X A = 42
σA = 8

nB = 50
X B  = 36
σB = 6


(1) A point estimate for µA−µB is:
X A  − X B

= 42−36 = 6.


(2) Finding a 96% confidence interval for µA−µB:

α = ??
96% = (1−α)100% ⇔ 0. 96 = (1−α) ⇔ α=0.04 ⇔ α/2 = 0.02
 (
1
−
)Reliability Coefficient: Z  α
2


= Z0.98   =  2.055
A 96% C.I. for µA−µB is:
( X A − X B ) ± Z  α
1−
2

82
6 ± Z 0.98




 (
σ
)2
     A  +
nA

62
+




 (
σ
)2
     B  
nB
75    50

6 ± (2.055)


64 + 36
75    50
6 ± 2.578
3.422 < µA−µB < 8.58

We are 96% confident that µA−µB ∈(3.42, 8.58).
Note: Since the confidence interval does not include zero, we conclude that the two population means are not equal (µA−µB≠0
⇔ µA≠µB).  Therefore, we may conclude that the mean time
length is not the same for the two types of surgeries.


Example: (2nd Case: σ 2 =σ 2

unknown)
1          2
To compare the time length (duration time) of two types of surgeries (A) and (B), an experiment shows the following results based on two independent samples:
Type  A:    140, 138, 143, 142, 144, 137
Type B:     135, 140, 136, 142, 138, 140
(1) Find a point estimate for µA−µB, where µA (µB) is the mean
time length of type A (B).
(2) Assuming normal populations with equal variances, find a
95% confidence interval for µA−µB.

Solution:
First we calculate the mean and the variances of the two samples, and we get:
	Surgery
	Type (A)
	Type (B)

	Sample Size
	nA = 6
	nB = 6

	Sample Mean
Sample Variance
	X A = 140.67
S2A = 7.87
	X B = 138.50
S2B = 7.10




(1) A point estimate for µA−µB is:
X A − X B

= 140.67 − 138.50 = 2.17.


(2) Finding 95% Confidence interval for µA−µB:

95% = (1−α)100% ⇔ 0. 95 = (1−α) ⇔ α=0.05 ⇔ α/2 = 0.025
.df = ν =  nA+nB − 2= 10
 (
1
−
)Reliability Coefficient: t   α
2

=  t0.975   =  2.228
The pooled estimate of the common variance is:

2       (n   − 1)S 2  + (n   − 1)S 2 
S p =     A

A           B             B
n A + nB − 2
(6 −1)(7.87) + (6 −1)(7.1)
=             6 + 6 − 2




=7.485
A 95% C.I. for µA−µB is:
2            2
( X   − X

) ± t

S p   + S p 
A            B           1−α
2

nA        nB

2.17 ± (2.228)


7.485 + 7.485
6           6
2.17 ± 3.519
−1.35< µA−µB < 5.69
We are 95% confident that µA−µB ∈(−1.35, 5.69).
Note: Since the confidence interval includes zero, we conclude that  the  two  population  means  may  be  equal  (µA−µB=0  ⇔
µA=µB). Therefore, we may conclude that the mean time length
is the same for both types of surgeries.


6.5 Confidence Interval for a Population  Proportion (p):













Recall:
1. For the population:
N (A) = number of elements in the  population with a
specified characteristic “A”
N = total number of elements in the population
(population size)
The population proportion is:
N (A)
p =    N                (p is a parameter)
2. For the sample:

n(A) = number of elements in the  sample with the same
characteristic “A”
n  = sample size
The sample proportion is:
n(A)
pˆ =
n

( pˆ

is a statistic)
3. The sampling distribution of the sample proportion ( pˆ
used to make inferences about the population proportion (p).

) is
4. The mean of ( pˆ

) is:

µ pˆ   = p

5. The variance of ( pˆ


 (
σ
)) is:

2  =  p(1 − p )
pˆ                  n
6. The standard error (standard deviation) of ( pˆ

) is:

σ pˆ   =

 p(1 − p)
n       .
 (
2
)7. For large sample size ( n ≥ 30, np > 5, n(1 −

p) > 5 ), the sample
proportion ( pˆ


) has approximately a normal distribution with

mean

µ pˆ   = p

and a variance σ pˆ

= p(1 − p) / n , that is:
 (
⎜
)pˆ ~ N ⎛ p ,
⎝

p(1 −
n

p) ⎞
⎟
⎠



(approximately)
Z =      pˆ − p p(1 − p)
n


~ N (0 ,1)



(approximately)
(i) Point Estimate for (p): Result:
A good point estimate for the population proportion (p) is
the sample proportion ( pˆ ).


(ii) Interval Estimation (Confidence Interval) for (p): Result:
For   large   sample   size   ( n ≥ 30, np > 5, n(1 −

p) > 5 ),   an
approximate (1 − α )100% confidence interval for (p) is:


pˆ ± Z   α
1 −
2

pˆ (1 − pˆ )
n
⎛
 (
⎜
)⎜ pˆ − Z  α
⎝                  1− 2

 pˆ (1 − pˆ )
,
n


 (
=
) (
n
)pˆ + Z  α
1−
2

 pˆ (1 − pˆ )  ⎞
 (
⎟
)⎟
⎠
Estimator ± (Reliability Coefficient) × (Standard Error)

Example:
In  a  study  on  the  obesity  of  Saudi  women,  a  random sample of 950 Saudi women was taken. It was found that 611 of
these women were obese (overweight by a certain percentage).
(1) Find a point estimate for the true proportion of Saudi women who are obese.
(2) Find a 95% confidence interval for the true proportion of
Saudi women who are obese.
Solution:
Variable: whether or not a women is obese (qualitative variable) Population: all Saudi women
Parameter:  p =the proportion of women who are obese.


Sample:
n = 950        (950 women in the sample)
n(A)

= 611    (611 women in the sample who are obese)
The sample proportion (the proportion of women who are obese in the sample.) is:
pˆ =

n(A)
=
n

611
950

= 0.643
(1) A point estimate for p is:

pˆ = 0.643 .
(2) We need to construct 95% C.I. for the proportion (p).
95 % = (1 − α )100%

⇔ 0.95 = 1 − α

⇔ α = 0.05

⇔ α = 0.025 ⇔ 1 − α
2                          2

= 0.975
The reliability coefficient:

Z   α  = z0.975
1 −

= 1.96 .
2
A 95% C.I. for the proportion (p) is:
 (
n
)pˆ (1 − pˆ )
pˆ ± Z   α
1 −
2

0.643 ± (1.96)  (0.643)(1 − 0.643)
950
0.643 ± (1.96)(0.01554)
0.643 ± 0.0305
(0.6127 , 0.6735)
We are 95% confident that the true value of the population
proportion of obese women, p, lies in the interval
that is:

(0.61, 0.67),
0.61 < p < 0.67


6.6  Confidence  Interval  for  the  Difference  Between  Two
Population  Proportions ( p1 −

p2 ):





Suppose that we have two populations with:
• p1 = population proportion of elements of type (A) in the
1-st population.
• p2 = population proportion of elements of type (A) in the
2-nd population.
• We are interested in comparing p1 and p2, or equivalently, making inferences about p1 − p2.
• We independently select a random sample of size n1 from
the 1-st population and another random sample of size n2
from the 2-nd population:

• Let X1 = no. of elements of type (A) in the 1-st sample.
• Let X2 = no. of elements of type (A) in the 2-nd sample.
 X 1
• pˆ1 =

• pˆ 2 =


n1
 X 2 
n2

=  the sample proportion of the 1-st sample



= the sample proportion of the 2-nd sample
• The sampling distribution of

pˆ1 −

pˆ 2


is used to make
inferences about
Recall:

p1 − p2 .

1. Mean of

pˆ1 −

pˆ 2


 (
1
)is:

µ pˆ

− pˆ 2    =
2

p1 − p2
 p  q   +  p  q 	
2. Variance of

pˆ1 −

pˆ 2 is:

σ pˆ


1    1              2     2
 (
1
) (
=
)− pˆ 2
 (
n
) (
n
)1                      2

3. Standard error (standard deviation) of

pˆ1 −

pˆ 2 is:
 (
1       
 
2
)σ pˆ  − pˆ    =

 p1  q1    +  p2  q2 	


4. For large samples sizes

n1                  n2
( n1  ≥ 30, n2

≥ 30, n1 p1

> 5, n1q1

> 5, n2 p2

> 5, n2 q2

> 5 ),    we    have

that

pˆ1 −

pˆ 2


has approximately normal
 (
1       
 
2
)2


distribution with mean
 p  q   +  p  q 	
 (
1      
 
2
)µ pˆ − pˆ

= p1 − p2

and variance

σ pˆ  − pˆ    =   1    1
n1

2     2    , that is:
n2
⎛                             p  q

p  q  ⎞
pˆ1

− pˆ 2

~ N ⎜ p1

− p2

,     1     1  +        2      2  ⎟

(Approximately)
⎝                                 n1

n2      ⎠
Z = ( pˆ1 − pˆ 2 ) − ( p1 − p2 )
 p1  q1  +  p2   q2 



~ N(0,1)    (Approximately)


Note: q1

n1
= 1 − p1



and

n2
q2  = 1 − p2 .


Point Estimation for p1− p2:
Result:

A good point estimator for the difference between the two proportions, p1− p2, is:

pˆ1 − pˆ 2

=  X 1
n1

−  X 2 
n2
Interval Estimation (Confidence Interval) for p1− p2:
Result:
For   large   n1     and   n2,   an   approximate   (1−α)100%
confidence interval for p1− p2 is:

( pˆ

− pˆ

) ± Z

 pˆ1  qˆ1    +  pˆ 2  qˆ 2 	
1           2

⎛                                                             pˆ  qˆ

1−α
 (
n
)2                1

pˆ  qˆ

n2

pˆ  qˆ



pˆ  qˆ   ⎞
⎜ ( pˆ

− pˆ

) − Z

     1    1   +        2     2   ,

( pˆ

− pˆ

) + Z

    1    1   +        2     2   ⎟
⎜        1           2
⎝

1−α
 (
n
) (
n
)2                1                    2

1           2              1−α                                 ⎟
 (
n
) (
n
)2                1                    2       ⎠
Estimator ± (Reliability Coefficient) × (Standard Error)

Example:
A researcher was interested in comparing the proportion of people  having  cancer  disease  in  two  cities  (A)  and  (B).  A
random sample of 1500 people was taken from the first city (A),
and another independent random sample of 2000 people was taken from the second city (B). It was found that 75 people in the first sample and 80 people in the second sample have cancer disease.
(1)  Find  a  point  estimate  for  the  difference  between  the proportions of people having cancer disease in the two cities.
(2) Find a 90% confidence interval for the difference between the two proportions.
Solution:
p1 = population proportion of people having cancer disease in the first city (A)
p2 = population proportion of people having cancer disease in the second city (B)
pˆ1 = sample proportion of the first sample
pˆ 2 = sample proportion of the second sample
X1= number of people with cancer in the first sample X2= number of people with cancer in the second sample For the first sample we have:
n1 = 1500 ,        X1=75


pˆ1

=  X 1
n1

=   75   = 0.05
 (
,
)1500

qˆ1  = 1 − 0.05 = 0.95
For the second sample we have:
n2 = 2000   ,       X2=80

pˆ 2

=  X 2  =   80   = 0.04       ,


qˆ2


= 1 − 0.04 = 0.96
n2          2000
(1) Point Estimation for p1− p2:
A good point estimate for the difference between the two proportions, p1− p2, is:
pˆ1 − pˆ 2

= 0.05 − 0.04
= 0.01
(2) Finding 90% Confidence Interval for p1− p2:
90% = (1−α)100% ⇔ 0. 90 = (1−α) ⇔ α=0.1 ⇔ α/2 = 0.05
The reliability coefficient:

Z    α  = z0.95  = 1.645
1−
2
 (
n
)A 90% confidence interval for p1− p2 is:

( pˆ

− pˆ

) ± Z

 pˆ1  qˆ1    +  pˆ 2  qˆ 2 	
 (
n
)1           2                1−α
2                1                     2

( pˆ1


− pˆ 2 ) ±


Z 0.95


 pˆ1  qˆ1    +  pˆ 2  qˆ2 	


0.01 ± 1.645

n1

(0.05)(0.95)
1500

n2

+ (0.04)(0.96)
2000
0.01 ± 0.01173
−0.0017 < p1− p2 < 0.0217
We are 90% confident that p1− p2 ∈ (−0.0017, 0.0217).
Note: Since the confidence interval includes zero, we may conclude  that  the  two  population  proportions  are  equal  (p1− p2=0 ⇔ p1= p2). Therefore, we may conclude that the proportion
of people having cancer is the same in both cities.

CHAPTER 7: Using Sample Statistics To Test Hypotheses
About Population Parameters:


In   this   chapter,   we   are   interested   in   testing   some hypotheses about the unknown population parameters.


7.1 Introduction:
Consider a population with some unknown parameter θ. We
are   interested   in   testing   (confirming   or   denying)   some conjectures about θ. For example, we might be interested in testing the conjecture that θ > θo, where θo is a given value.
• A   hypothesis   is   a   statement   about   one   or   more
populations.
• A research hypothesis is the conjecture or supposition
that motivates the research.
• A statistical hypothesis is a conjecture (or a statement)
concerning  the  population  which  can  be  evaluated  by
appropriate statistical technique.
• For  example,  if  θ is  an  unknown  parameter  of  the
population,   we   might   be   interested   in   testing   the conjecture sating that θ ≥ θo  against θ < θo  (for some specific value θo).
• We  usually  test  the  null  hypothesis  (Ho)  against  the
alternative  (or  the  research)  hypothesis  (H1   or  HA)  by
choosing one of the following situations:
(i)	Ho: θ = θo     against    HA: θ ≠ θo (ii)	Ho: θ ≥ θo     against    HA: θ < θo (iii)	Ho: θ ≤ θo     against    HA: θ > θo
• Equality sign must appear in the null hypothesis.
• Ho   is  the  null  hypothesis  and  HA   is  the  alternative
hypothesis. (Ho and HA are complement of each other)
• The null hypothesis (Ho) is also called "the hypothesis of
no difference".
• The alternative hypothesis (HA) is also called the research
hypothesis.

• There  are  4  possible  situations  in  testing  a  statistical
hypothesis:
Condition of Null Hypothesis Ho
(Nature/reality)


Possible Action (Decision)


 (
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(
β
)
Rejecting 
H
o
Type
 
I
 
error
(
α
)
Correct
 
Decision
)• There are two types of Errors:
o Type I error = Rejecting Ho when Ho is true
P(Type I error) = P(Rejecting Ho | Ho is true) = α
o Type II error = Accepting Ho when Ho is false
P(Type II error) = P(Accepting Ho | Ho is false) = β

• The level of significance of the test is the probability of rejecting true Ho:
α = P(Rejecting Ho | Ho is true) = P(Type I error)

• There are 2 types of alternative hypothesis:
o One-sided alternative hypothesis:
-   HO: θ ≥ θo           against    HA: θ < θo
-   HO: θ ≤ θo           against    HA: θ > θo
o Two-sided alternative hypothesis:
-   HO: θ = θo           against    HA: θ ≠ θo

• We will use the terms "accepting" and "not rejecting" interchangeably. Also, we will use the terms "acceptance" and "nonrejection" interchangeably.
• We  will  use  the  terms  "accept"  and  "fail  to  reject"
interchangeably


The Procedure of Testing Ho (against HA):
The  test  procedure  for  rejecting  Ho   (accepting  HA)  or
accepting Ho (rejecting HA) involves the following steps:

1. Determining a test statistic (T.S.)
We choose the appropriate test statistic based on the point estimator of the parameter.
The test statistic has the following form:
Estimate

−  hypothesized parameter
Test statistic =


Sta.ndard


Error of


the Estimate
2. Determining the level of significance (α):
α = 0.01, 0.025, 0.05, 0.10
3. Determining the rejection region of Ho  (R.R.) and the
acceptance region of Ho (A.R.).
The R.R. of Ho depends on HA and α:
• HA   determines the direction of the R.R. of Ho
• α determines the size of the R.R. of Ho
(α = the size of the R.R. of Ho = shaded area)











HA: θ ≠ θo
Two-sided alternative
4. Decision:

HA: θ > θo
One-sided alternative

HA: θ < θo
One-sided alternative




Notes:

We reject Ho  (and accept HA) if the value of the test statistic (T.S.) belongs to the R.R. of Ho , and vice versa.
1. The rejection region of Ho  (R.R.) is sometimes called "the critical region".
2. The values which separate the rejection region (R.R.) and the acceptance region (A.R.) are called "the critical values".

7.2 Hypothesis Testing: A Single Population Mean (µ):
Suppose that X1, X2, …, Xn  is a random sample of size n
from a distribution (or population) with mean µ and variance σ2.
We need to test some hypotheses (make some statistical inference) about the mean (µ).

Recall:
1.  X  is a "good" point estimate for µ.
 (
X
)2. Mean of  X   is:

µ = µ .
σ 2
 (
σ
) (
=
)3. Variance of  X  is:           2                   .
X           n
4. Standard error (standard deviation) of

X  is:
 (
σ
)σ  =      2   = σ .

X              X               n
5. For the case of normal distribution with any sample size or the case of non-normal distribution with large sample size,
and for known variance σ 2 , we have:
⎛
X ~ N ⎜ µ,

σ 2  ⎞
⎟
⎝            n  ⎠
Z =  X − µ


~ N(0,1)
σ /   n
6. For the case of normal distribution with unknown variance
σ 2    and with any sample size, we have:
t =  X − µ


~ t(n-1).
S /   n

 (
2
)n
where S =

∑( X i  − X )

/(n −1)

and df = ν = n -1.
i =1

The Procedure for hypotheses testing about the mean (µ):

Let µo be a given known value.

(1) First case:
Assumptions:
- The variance σ 2 is known.
- Normal distribution with any sample size, or
- Non-normal distribution with large sample size.
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)Test Procedures:










(2) Second case:
Assumptions:
- The variance σ 2 is unknown.
- Normal distribution.
- Any sample size.
Test Procedures:
	Hypotheses
	Ho: µ = µo
HA µ ≠ µo
	Ho: µ ≤ µo
HA: µ > µo
	Ho: µ ≥ µo
HA: µ < µo

	Test Statistic
(T.S.)
	Calculate the value of:  t =  X − µo   ~ t(n−1)
S /   n
(df  = ν = n-1)

	R.R. & A.R. of Ho
	









	









	










	Critical value (s)
	t α/2   and − t α/2
	t 1-α = − t α
	t α

	Decision:
	We reject Ho (and accept HA) at the significance level α if:

	
	t < t α/2    or
t > t 1-α/2 = − t α/2
Two-Sided Test
	t > t 1-α = − t α

One-Sided Test
	t < t α

One-Sided Test




Example:  (first case: variance σ 2

is known)
A random sample of 100 recorded deaths in the United States during the past year showed an average of 71.8 years. Assuming a population standard deviation of 8.9 year, does this seem to indicate that the mean life span today is greater than 70 years? Use a 0.05 level of significance.
Solution:
.n=100 (large),

X =71.8,    σ=8.9 (σ is known )
µ=average (mean) life span
µo=70
α=0.05
Hypotheses:

Ho: µ ≤ 70    (µo=70)
HA: µ > 70    (research hypothesis)
Test statistics (T.S.) :
Z =  X − µo

=  71.8 − 70

= 2.02
σ /   n

8.9 /

100
Level of significance:
α=0.05
Rejection Region of Ho (R.R.): (critical region)
- Z α=-Z0.05=1.645   (critical value) We should reject Ho if:
Z > -Z α =-Z0.05=1.645












Decision:
Since   Z=2.02   ∈R.R.,  i.e.,   Z=2.02>-Z0.05,   we   reject
Ho:µ≤70 at α=0.05 and accept HA:µ>70. Therefore, we conclude
that the mean life span today is greater than 70 years.




Note: Using P- Value as a decision tool:
P-value is the smallest value of α for which we can reject
the null hypothesis Ho.
Calculating P-value:
* Calculating P-value depends on the alternative hypothesis
HA.

 (
C
)* Suppose that

Z    =  X  − µo  


is the computed value of the test

Statistic.

σ /   n
* The following table illustrates how to compute P-value, and how to use P-value for testing the null hypothesis:

	Alternative Hypothesis:
	HA: µ ≠ µo
	HA: µ > µo
	HA: µ < µo

	P-Value =
	2×P(Z > | Z C |)
	P(Z > Z C )
	P(Z < Z C )

	Significance Level =
	α

	Decision:
	Reject Ho if P-value < α.




Example:
For the previous example, we have found that:
X − µo
Z C   =               =2.02
σ /   n
The alternative hypothesis was HA: µ > 70.
P −Value = P(Z > Z C )
= P(Z

> 2.02) = 1 − P(Z < 2.02) = 1 − 0.9783 = 0.0217
The level of significance was α = 0.05. Since P-value < α, we reject Ho.


Example: (second case: variance σ 2

is unknown)
The manager of a private clinic claims that the mean time of the patient-doctor visit in his clinic is 8 minutes. Test the hypothesis
that µ=8 minutes against the alternative that µ≠8 minutes if a
random sample of 50 patient-doctor visits yielded a mean time
of 7.8 minutes with a standard deviation of 0.5 minutes. It is assumed that the distribution of the time of this type of visits is
normal. Use a 0.01 level of significance.
Solution:
The distribution is normal.
.n=50  (large)
X =7.8
S=0.5 (sample standard deviation)
σ is unknown
µ= mean time of the visit
µo=8
α=0.01    (α/2 = 0.005)
Hypotheses:
Ho: µ = 8           (µo=8)
HA: µ ≠ 8          (research hypothesis)

Test statistics (T.S.):
t =  X − µo  =   7.8 − 8   = −2.83
S /   n

0.5 /   50
df = ν = n-1 = 50-1=49
Level of significance:
α = 0.01
Rejection Region of Ho (R.R.):   (critical region)
t α/2 = t 0.005 (= − t 0.995 )= − 2.678           (1st critical value)
− t α/2 = −t0.005  = 2.678                           (2nd critical value)
We should reject Ho if:
t < t α/2 = t0.005 = −2.678
or
t > − t α/2 =  −t0.005  = 2.678














Decision:
Since  t= −2.83  ∈R.R., i.e.,  t= −2.83  < t0.005, we reject
Ho:µ=8 at α=0.01 and accept HA:µ≠8. Therefore, we conclude
that the claim is not correct.


Note:

For the case of non-normal population with unknown variance, and  when  the  sample  size  is  large  (n≥30),  we  may  use  the
following test statistic:
Z =  X  − µo  



~ N(0,1)
S /   n
That is, we replace the population standard deviation (σ) by the
sample  standard  deviation  (S),  and  we  conduct  the  test  as
described for the first case.



7.3   Hypothesis   Testing:   The   Difference   Between   Two
Population Means: (Independent Populations)
Suppose that we have two (independent) populations:
 (
1
)• 1-st population with mean µ1 and variance σ 2
 (
2
)• 2-nd population with mean µ2 and variance σ 2
• We   are   interested   in   comparing   µ1     and   µ2,   or
equivalently,  making  inferences  about  the  difference between the means (µ1−µ2).
• We independently select a random sample of size n1 from
the 1-st population and another random sample of size n2
from the 2-nd population:
 (
S
) (
1
)• Let

X1   and    2

be  the  sample  mean  and  the  sample
variance of the 1-st sample.
 (
S
) (
2
)• Let

X 2    and    2

be  the  sample  mean  and  the  sample
variance of the 2-nd sample.
• The  sampling distribution  of
inferences about µ1−µ2.


X1 − X 2



is used  to  make
We  wish  to  test  some  hypotheses  comparing  the  population
means.
Hypotheses:

We choose one of the following situations: (i)	Ho: µ1 = µ2  against   HA: µ1 ≠ µ2 (ii)	Ho: µ1 ≥ µ2    against   HA: µ1 < µ2 (iii)	Ho: µ1 ≤ µ2    against   HA: µ1 > µ2
or equivalently,
(i)     Ho: µ1-µ2 = 0   against  HA: µ1 - µ2 ≠ 0 (ii)    Ho: µ1-µ2 ≥ 0   against  HA: µ1 - µ2 < 0 (iii)  Ho: µ1-µ2 ≤ 0   against  HA: µ1 - µ2 > 0
Test Statistic: (1) First Case:
For normal populations (or non-normal populations with
 (
σ
) (
σ
) (
1
) (
2
)large sample sizes), and if    2
statistic is:

and    2

are known, then the test

Z  =    X 1  − X 2 	
σ 2        σ 2

~ N(0,1)
     1    +      2  


(2) Second Case:

n1          n2
 (
σ
) (
σ
) (
1
) (
2
)For normal populations, and if    2

and    2

are unknown but
equal (σ 2 =σ 2 =σ2), then the test statistic is:
1          2
T  =   X 1  − X 2 	
S 2         S 2

~ t(n1+n2−2)
     p    +      p  
n1          n2
where the pooled estimate of σ2 is
(n  − 1)S 2 + (n

− 1)S 2
 (
p
)S 2  =      1            1            2             2  
n1 + n2 − 2
 (
S
) (
p
)and the degrees of freedom of   2

is df= ν=n1

+n2

−2.

Summary of Testing Procedure:
	Hypotheses
	Ho: µ1 − µ2 = 0
HA: µ1 − µ2 ≠ 0
	Ho: µ1 − µ2 ≤ 0
HA: µ1 − µ2 >  0
	Ho: µ1 − µ2 ≥ 0
HA: µ1 − µ2 < 0

	Test Statistic For the First Case:
	Z =      X 1  − X 2 	
σ 2        σ 2     ~ N(0,1)            {if σ 2  and σ 2  are known}
1                   2
     1    +      2  
n1          n2

	R.R. and A.R. of Ho (For the First Case)
	









	









	










	Test Statistic
For the Second
Case:
	T  =   X 1  − X 2 	
S 2         S 2     ~ t(n1+n2−2)    {if σ 2 =σ 2 =σ2 is unknown}
1          2
     p    +      p  
n1          n2

	R.R. and A.R. of Ho (For the Second Case)
	









	









	










	Decision:
	Reject Ho (and accept HA) at the significance level α if:

	
	T.S. ∈ R.R.
Two-Sided Test
	T.S. ∈ R.R.
One-Sided Test
	T.S. ∈ R.R.
One-Sided Test




 (
1
) (
2
)Example: (σ 2

and σ 2

are known)
Researchers wish to know if the data they have collected provide sufficient evidence to indicate the difference in mean serum uric acid levels between individuals with Down's syndrome and normal individuals. The data consist of serum uric  acid  on  12  individuals  with  Down's  syndrome  and  15
normal individuals. The sample means are

X 1  = 4.5

mg/100ml
and

X 2  = 3.4

mg/100ml. Assume the populations are normal with
variances σ 2 =1 and σ 2 =1.5. Use significance level α=0.05.
1                          2

Solution:
µ1 = mean serum uric acid levels for the individuals with
Down's syndrome.
µ2 = mean serum uric acid levels for the normal individuals.
2
n1  = 12
n2  = 15

X 1  = 4.5
X 2  = 3.4

σ1 =1
 (
2
)σ 2 =1.5.


Hypotheses:
Ho: µ1 = µ2    against   HA: µ1 ≠ µ2
or
Ho: µ1-µ2 = 0   against  HA: µ1 - µ2 ≠ 0
Calculation:
α=0.05
Z0.75 = 1.96        (1st critical value)
-Z0.75 = -1.96   (2nd critical value)
Test Statistic (T.S.):
Z =    X 1 − X 2      =   4.5 − 3.4   = 2.569
σ 2        σ 2

1     1.5
     1   +         2                          +
n1          n2

12    15

Decision:
Since Z=2.569 ∈R.R. we reject Ho: µ1=µ2 and we accept
(do not reject) HA: µ1 ≠ µ2 at α=0.05. Therefore, we conclude
that the two population means are not equal.
Notes:
1. We can easily show that a 95% confidence interval for (µ1-
µ2) is (0.26, 1.94), that is:
0.26<µ1-µ2<1.94


Since this interval does not include 0, we say that 0 is not a candidate for the difference between the population means (µ1-
µ2), and we conclude that µ1-µ2≠0, i.e., µ1≠µ2. Thus we arrive
at the same conclusion by means of a confidence interval.
2. P − Value = 2 × P(Z

>| ZC  |)
= 2P(Z > 2.57) = 2[1 − P(Z < 2.57)] = 2(1 − 0.9949) = 0.0102
The level of significance was α = 0.05. Since P-value < α, we reject Ho.

Example: (σ 2 =σ 2 =σ2 is unknown)
1          2
An experiment was performed to compare the abrasive wear of two different materials used in making artificial teeth.
12 pieces of material 1 were tested by exposing each piece to a machine measuring wear. 10 pieces of material 2 were similarly tested.  In  each  case,  the  depth  of  wear  was  observed.  The samples of material 1 gave an average wear of 85 units with a sample standard deviation of 4, while the samples of materials 2 gave an average wear of 81 and a sample standard deviation of
5. Can we conclude at the 0.05 level of significance that the mean abrasive wear of material 1 is greater than that of material
2? Assume normal populations with equal variances.
Solution:        	
Material 1            material 2
n1=12
X1 =85
S1=4

n2=10
X 2 =81
S2=5



Hypotheses: Ho: µ1 ≤ µ2
HA: µ1 > µ2
Or equivalently, Ho: µ1 − µ2 ≤ 0
HA: µ1 − µ2 > 2
Calculation:
α=0.05

2                          2                             2                            2
 (
p
)S 2 = (n1 − 1)S1  + (n2 − 1)S 2   = (12 − 1)(4)  + (10 − 1)(5)  = 20.05
n1 + n2 − 2
.df = ν= n1+n2−2=12+10 −2 = 20
t0.05 = 1.725    (critical value)
Test Statistic (T.S.):

12 + 10 − 2
T =    X 1  − X 2      =            85 − 81         = 1.04
S 2        S 2

20.05

20.05
     p   +         p                                  +
n1         n2
Decision:

12         10
Since T=1.04 ∈A.R. (T=1.04< t0.05 = 1.725), we accept (do not  reject)  Ho   and  we  reject  HA:µ1−µ2>  0  (HA:µ1   >  µ2)  at α=0.05. Therefore, we conclude that the mean abrasive wear of
material 1 is not greater than that of material 2.


7.4 Paired Comparisons:
- In this section, we are interested in comparing the means of two	related       (non-independent/dependent)       normal populations.
- In other words, we wish to make statistical inference for the difference	between  the  means  of  two  related  normal populations.
- Paired  t-Test  concerns  about  testing  the  equality  of  the means of two related normal populations.
Examples of related populations are:
1. Height of the father and height of his son.
2. Mark of the student in MATH and his mark in STAT.
3. Pulse  rate  of  the  patient  before  and  after  the  medical treatment.
4. Hemoglobin  level  of  the  patient  before  and  after  the medical treatment.


Example: (effectiveness of a diet program)
Suppose that we are interested in studying the effectiveness of a certain diet program. Let the random variables X and Y are as follows:

X = the weight of the individual before the diet program
Y= the weight of the same individual after the diet program
We assume that the distributions of these random variables are
normal with means

µ1  and

µ2 , respectively.
These  two  variables  are  related  (dependent/non-independent)
because they are measured on the same individual. Populations:
1-st population (X):  weights before a diet program
mean =  µ1
2-nd population (Y):  weights after the diet program


Question:

mean =  µ2
Does the diet program have an effect on the weight?
Answer is:
No if
Yes if

µ1  = µ2
µ1  ≠ µ2

(µ1-µ2 = 0) (µ1-µ2 ≠ 0 )
Therefore, we need to test the following hypotheses:
Hypotheses:
Ho: µ1 = µ2  (Ho: the diet program has no effect on weight) HA: µ1 ≠ µ2  (HA: the diet program has an effect on weight)

Equivalently we may test: Ho: µ1 - µ2 = 0
HA: µ1 - µ2  ≠ 0
Testing procedures:
•  We  select  a  random  sample  of  n  individuals.  At  the
beginning of the study, we record the individuals' weights
 (
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)before the diet program (X). At the end of the diet program, we record the individuals' weights after the program (Y). We end up with the following information and calculations:

	Individual i
	Weight before
Xi
	Weight after
Yi
	Difference
Di = Xi - Yi

	.
	.
	.
	

	n
	Xn
	Yn
	Dn = Xn – Yn


•  Hypotheses:
Ho: the diet program has no effect on weight
HA: the diet program has an effect on weight

Equivalently, Ho: µ1 = µ2
HA: µ1 ≠ µ2
Equivalently,
Ho: µ1 - µ2 = 0
HA: µ1 - µ2  ≠ 0
Equivalently, Ho: µD = 0
HA: µD ≠ 0
where:
µD = µ1 - µ2

•  We calculate the following quantities:
�  The differences (D-observations):
Di = Xi - Yi       (i=1, 2, …, n)
�  Sample mean of the D-observations (differences):
n
   ∑ Di
D =    i =1            =
n

D1  + D2  + ... + Dn  
n
�  Sample variance of the D-observations (differences):
 (
∑
(
D 
 
−
 
D
 
)
)n
2
(      )2        (      )2       L  (      )2  
 (
S
) (
=
)2          i =1
D

i
n − 1

=  D1  − D

+  D2  − D    +
n − 1

+  Dn  − D
�  Sample standard deviation of the D-observations:

2

•  Test Statistic:

S D  =    S D
We calculate the value of the following test statistic:

t =      D 	


~ t(n−1)
S D  /   n
This statistic has a t-distribution with df = ν = n-1.
•  Rejection Region of Ho:
Critical values are: t α/2   and t 1-α/2 = − t α/2.
The rejection region (critical region) at the significance level α is:
t < t α/2   or   t > t 1-α/2 = − t α/2














•  Decision:
We  reject  Ho   and  accept  HA   at  the  significance  level  α if
T∈R.R. ,i.e., if:
t < t α/2    or   t > t 1-α/2 = − t α/2


Numerical Example:
In the previous example, suppose that the sample size was
10 and the data were as follows:
	Individual (i)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Weight before (Xi)
	86.6
	80.2
	91.5
	80.6
	82.3
	81.9
	88.4
	85.3
	83.1
	82.1

	Weight after (Yi)
	79.7
	85.9
	81.7
	82.5
	77.9
	85.8
	81.3
	74.7
	68.3
	69.7



Does  these  data  provide  sufficient  evidence  to  allow  us  to conclude that the diet program is effective? Use α=0.05 and
assume that the populations are normal.
Solution:
µ1 = the mean of weights before the diet program
µ2  = the mean of weights after the diet program
Hypotheses:
Ho: µ1 = µ2             (Ho: the diet program is not effective)

HA: µ1 ≠ µ2            (HA: the diet program is effective)
 (
D
)Equivalently, Ho: µD = 0
HA: µD ≠ 0       (where: µD = µ1 - µ2)
Calculations:
	i
	Xi
	Yi
	Di = Xi – Yi

	1
	86.6
	79.7
	6.9

	2
	80.2
	85.9
	-5.7

	3
	91.5
	81.7
	9.8

	4
	80.6
	82.5
	-1.9

	5
	82.3
	77.9
	4.4

	6
	81.9
	85.8
	-3.9

	7
	88.4
	81.3
	7.1

	8
	85.3
	74.7
	10.6

	9
	83.1
	68.3
	14.8

	10
	82.1
	69.7
	12.4

	sum
	∑ X =842
	∑Y =787.5
	∑ D =54.5


n
   ∑ Di          54.5
D =    i =1           =          = 5.45
n
n
∑ ( Di

10
 (
2
)− D ) 2
S 2   =     i =1                                  = (6.9 − 5.45)  + ... + (12.4 − 5.45)   = 50.3283
D                      n − 1

10 −1

 (
S
) (
=
)S D  =

2             50.3283 = 7.09
Test Statistic:



t =       D      =       5.45      = 2.431
S D  /   n
Degrees of freedom:

7.09 /   10
 (
2
)df= ν= n-1 = 10-1=9
Significance level: α=0.05
Rejection Region of Ho:
Critical values: t 0.025 = - 2.262 and t 0.975=- t 0.025= 2.262
Critical Region: t < - 2.262   or  t >  2.262


Decision:
Since t= 2.43 ∈R.R., i.e., t=2.43 > t0.975=−t0.025=2.262, we reject: Ho: µ1 = µ2    (the diet program is not effective)
and we accept:
H1: µ1 ≠ µ2    (the diet program is effective)
Consequently, we conclude that the diet program is effective at
α=0.05.
Note:
- The sample mean of the weights before the program is
X = 84.2
- The  sample  mean  of  the  weights  after  the  program  is
Y = 78.75
- Since the diet program is effective and since

X = 84.2  >
Y = 78.75 , we can conclude that the program is effective in
reducing the weight.


Confidence Interval for the Difference between the Means of
Two Related Normal Populations ( µD

= µ1 − µ2 ):
In this section, we consider constructing a confidence interval for the difference between the means of two related (non-independent) normal populations. As before, let us define the difference between the two means as follows:
µD = µ1 − µ2
where

µ1  is the mean of the first population and µ2

is the mean
of  the  second  population.  We  assume  that  the  two  normal populations are not independent.
Result:
A (1 − α )100%

confidence interval for

µD = µ1 − µ2 is:

D  ± t

 S D  
α


D − t



 (
<
) S D  
α

1−
2
µD   <

n

D + t



 S D  
α


where:
n

1− 2         n

1− 2         n


n                     	
   ∑ Di

∑(Di

− D )2
D =    i =1                 ,                 2   ,

S 2   =   i =1 	
S D  =    S D               D
n


n −1

,  df =

ν = n-1.


Example:
Consider the data given in the previous numerical example:
	Individual (i)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Weight before (Xi)
	86.6
	80.2
	91.5
	80.6
	82.3
	81.9
	88.4
	85.3
	83.1
	82.1

	Weight after (Yi)
	79.7
	85.9
	81.7
	82.5
	77.9
	85.8
	81.3
	74.7
	68.3
	69.7



Find a 95% confidence interval for the difference between the mean of weights before the diet program ( µ1 ) and the mean of weights after the diet program ( µ2 ).


Solution:
 (
D
)We need to find a 95% confidence interval for


µD = µ1 − µ2 :
D ± t

 S D  
α


We have found:

1− 2        n
 (
D
)D = 5.45   ,

S 2   = 50.3283   ,

SD  =

S 2   = 7.09
The value of the reliability coefficient

t   α   ( df
1−
2

=ν = n −1 = 9 ) is
t   α  = t0.975  = 2.262 .
1−
2
Therefore, a 95% confidence interval for

µD = µ1 − µ2 is
5.45 ±


(2.262)

7.09

10
5.45 ± 5.0715
0.38 < µD

< 10.52
0.38 <

µ1 − µ2

< 10.52

We are 95% confident that

µD = µ1 − µ2

∈ (0.38, 10.52).


Note: Since this interval does not include 0, we say that 0 is not a candidate for the difference between the population means
(µ1-µ2), and we conclude that µ1-µ2 ≠ 0, i.e., µ1 ≠ µ2. Thus we
arrive at the same conclusion by means of a confidence interval.


7.5 Hypothesis Testing: A Single Population Proportion (p):
In   this   section,   we   are   interested   in   testing   some hypotheses about the population proportion (p).












Recall:
• p = Population proportion of elements of Type A in the
population
p =  no. of  elements of  type A in the  population
Total

no. of

elements

in the

population

p =  A N


( N =


population


size)
• .n = sample size
• X = no. of elements of type A in the sample of size n.
• pˆ = Sample proportion elements of Type A in the sample
pˆ =

no. of  elements of  type A in the sample
no. of

elements

in the

sample
pˆ =  X
n



(n=sample size=no. of elements in the sample)
• pˆ  is a "good" point estimate for p.
• For large n, ( n ≥ 30, np > 5 ), we have

Z =      pˆ − p 	
p(1 − p)
n



~ N(0,1)
• Let po be a given known value.
• Test Procedure:




	Hypotheses
	Ho: p = po
HA: p ≠ po
	Ho: p ≤ po
HA: p > po
	Ho: p ≥ po
HA: p < po

	Test Statistic
(T.S.)
	Z =        pˆ − p0           ~N(0,1)
 p0 (1 − p0 )
n

	R.R. & A.R. of Ho
	









	









	










	Decision:
	Reject Ho (and accept HA) at the significance level α if:

	
	Z < Z α/2    or
Z >  Z 1-α/2 = − Z α/2
Two-Sided Test
	Z > Z 1-α = − Z α

One-Sided Test
	Z <  Z α

One-Sided Test




Example:
A researcher was interested in the proportion of females in the population of all patients visiting a certain clinic. The researcher claims that 70% of all patients in this population are females. Would you agree with this claim if a random survey shows that 24 out of 45 patients are females? Use a 0.10 level of significance.
Solution:
p = Proportion of female in the population.
.n=45 (large)
X= no. of female in the sample =  24
pˆ = proportion of females in the sample

pˆ  =   X
n

=  24 = 0.5333
45
 (
o
)p =   70  = 0.7
100
α=0.10
Hypotheses:

Ho: p = 0.7   ( po=0.7) HA: p ≠ 0.7
Level of significance:
α=0.10
Test Statistic (T.S.):
Z =       pˆ − p0 	
p0 (1 − p0 )
n
= 0.5333 − 0.70 = −2.44
(0.7)(0.3)
45
Rejection Region of Ho (R.R.): Critical values:
Z α/2=Z0.05= −1.645
− Z α/2= −Z0.05= 1.645
We reject Ho if:
Z < Z α/2=Z0.05= −1.645
or
Z >  − Z α/2= −Z0.05= 1.645
















Decision:
Since Z= −2.44 ∈Rejection Region of Ho (R.R), we reject

Ho:p=0.7 and accept HA:p ≠0.7 at α=0.1. Therefore, we do not
agree with the claim stating that 70% of the patients in this
population are females.


Example:
In a study on the fear of dental care in a certain city, a survey showed that 60 out of 200 adults said that they would hesitate to take a dental appointment due to fear. Test whether
the proportion of adults in this city who hesitate to take dental
appointment is less than 0.25. Use a level of significance of
0.025.
Solution:
p = Proportion of adults in the city who hesitate to take a dental appointment.
.n= 200 (large)
X= no. of adults who hesitate in the sample =  60
pˆ  = proportion of adults who hesitate in the sample
pˆ  =   X
n

=  60  = 0.3
200
po=0.25
α=0.025
Hypotheses:
Ho: p ≥ 0.25    ( po=0.25)
HA: p < 0.25   (research hypothesis)
Level of significance:
α=0.025
Test Statistic (T.S.):
Z =       pˆ − p0 	
 p0 (1 − p0 )
n

=      0.3 − 0.25     = 1.633
(0.25)(0.75)
200
Rejection Region of Ho (R.R.):
Critical value:    Z α= Z0.025= −1.96
Critical Region:
We reject Ho if: Z <  Z α= Z0.025= −1.96


Decision:
Since  Z=1.633∈Acceptance  Region  of  Ho   (A.R.),  we accept (do not reject) Ho: p ≥ 0.25 and we reject HA: p < 0.25 at α=0.025. Therefore, we do not agree with claim stating that the
proportion  of  adults  in  this  city  who  hesitate  to  take  dental
appointment is less than 0.25.


7.6   Hypothesis   Testing:   The   Difference   Between   Two
Population Proportions (p1-p2):
In   this   section,   we   are   interested   in   testing   some hypotheses   about   the   difference   between   two   population
proportions (p1-p2).




















Suppose that we have two populations:
• .p1 = population proportion of the 1-st population.
• .p2 = population proportion of the 2-nd population.
• We are interested in comparing p1 and p2, or equivalently,
making inferences about p1− p2.
• We independently select a random sample of size n1 from

the 1-st population and another random sample of size n2
from the 2-nd population:
• Let X1 = no. of elements of type A in the 1-st sample.
• Let X2 = no. of elements of type A in the 2-nd sample.
X
• pˆ1 =       1
n1
 (
n
) (
2
)• pˆ   =   X 2
2

= the sample proportion of the 1-st sample


= the sample proportion of the 2-nd sample
• The  sampling  distribution  of
inferences about p1− p2.
• For large n1 and n2, we have

pˆ1 − pˆ 2

is  used  to  make
Z = ( pˆ1 − pˆ 2 ) − ( p1 − p2 )
 p1 q1 +  p2  q2


~ N(0,1)    (Approximately)
n1              n2
• q = 1 − p


Hypotheses:
We choose one of the following situations:
	(i)
	Ho: p1 = p2
	against
	HA: p1 ≠ p2

	(ii)
	Ho: p1 ≥ p2
	against
	HA: p1 < p2

	(iii)
	Ho: p1 ≤ p2
	against
	HA: p1 > p2


or equivalently,
	(i)
	Ho: p1-p2 = 0
	against
	HA: p1 - p2 ≠ 0

	(ii)
	Ho: p1-p2 ≥ 0
	against
	HA: p1 - p2 < 0

	(iii)
	Ho: p1-p2 ≤ 0
	against
	HA: p1 - p2 > 0



Note, under the assumption of the equality of the two population proportions (Ho: p1= p2= p), the pooled estimate of the common proportion p is:
p =  X 1  + X 2 
n1  + n2
The test statistic (T.S.) is

( q = 1 − p )

Z =      =

( pˆ 1  − pˆ 2 )       	
 p(1 − p) +  p(1 − p)

~ N(0,1)
n1                        n2
Testing Procedure:
	Hypotheses
	Ho: p1 − p2 =0
HA: p1 − p2 ≠ 0
	Ho: p1 − p2 ≤ 0
HA: p1 − p2 > 0
	Ho: p1 − p2 ≥ 0
HA: p1 − p2 < 0

	Test Statistic
(T.S.)
	Z =     =   ( pˆ 1  − pˆ 2 )       	
p(1 − p)     p(1 − p)  ~ N(0,1)
+
n1                        n2

	R.R. and
A.R. of Ho
	









	









	










	Decision:
	Reject Ho  (and accept H1) at the significance level α if
Z∈R.R.:

	Critical
Values
	Z > Z α/2
or Z < − Z α/2
Two-Sided Test
	Z > Z α

One-Sided Test
	Z < − Z α

One-Sided Test




Example:
In a study about the obesity (overweight), a researcher was interested in comparing the proportion of obesity between males and females. The researcher has obtained a random sample of
 (
n
Number
 
of
 
obe
s
e
 
people
Males
150
21
Females
200
48
)150  males  and  another  independent  random  sample  of  200 females. The following results were obtained from this study.







Can  we  conclude  from  these  data  that  there  is  a  difference between the proportion of obese males and proportion of obese
females? Use α = 0.05.
Solution:

.p1 = population proportion of obese males
.p2 = population proportion of obese females
pˆ1 = sample proportion of obese males
pˆ 2 = sample proportion of obese females


Males                                   Females
n1 = 150                               n2 = 200
X1=21                                  X2=48

pˆ1

=  X 1

=  21

= 0.14


pˆ 2

=  X 2   =  48  = 0.24
n1         150

n2           200
The pooled estimate of the common proportion p is:
p =  X 1 + X 2  =   21 + 48   = 0.197


Hypotheses:
Ho: p1 = p2
HA: p1 ≠ p2

n1 + n2

150 + 200
or
Ho: p1 − p2 =0
HA: p1 − p2 ≠ 0
Level of significance: α=0.05
Test Statistic (T.S.):
Z =      =

( pˆ 1  − pˆ 2 )       	


               (0.14 − 0.24) 	
 p(1 − p) +  p(1 − p)  =


0.197 × 0.803 +


0.197 × 0.803

= −2.328
n1                        n2

150

200


Rejection Region (R.R.) of Ho: Critical values:
Zα/2= Z0.025= -1.96
Z1-α/2= Z0975= 1.96
Critical region:
Reject Ho if:   Z < -1.96  or    Z > 1.96


Decision:
Since Z= -2.328 ∈R.R., we reject Ho: p1  = p2  and accept
HA: p1  ≠ p2  at α=0.05. Therefore, we conclude that there is a
difference  between  the  proportion  of  obese  males  and  the
proportion  of  obese  females.  Additionally,  since,

pˆ1  = 0.14   <
pˆ 2  = 0.24 , we may conclude that the proportion of obesity for
females is larger than that for males.
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