KING SAUD UNIVERSITY DEPARTMENT OF MATHEMATICS

TIME: 1H 30 mn , FULL MARKS: 40, 07/06/1432
MATH 204

Question 1. a) [7] Show that $f(x)=\cosh 2 x, g(x)=e^{-2 x}$ are solutions of the differential equation: $y^{\prime \prime}-4 y=0$, and show that $\left\{\cosh 2 x, e^{-2 \cdot x}\right\}$ is a fundamental set of solutions of the differential equation: $y^{\prime \prime}-4 y=0$.
b) [8] If the function $y_{1}=x$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}-\left(x^{2}+2 x\right) y^{\prime}+(x+2) y=0, \quad x>0 .
$$

Use the method of reduction of order to find the second solution y_{2}, and hence find the general solution.

Question 2. [8] Use the method of variation of parameters to find the general solution of the nonhomogeneous differential equation:

$$
y^{\prime \prime}-2 y^{\prime}+2 y=e^{x} \tan x
$$

(Hint: $\int \sec \alpha x d x=\frac{1}{2} \ln |\sec \alpha x+\tan \alpha x|$).

Question 3. [8] Determine only the form of the particular solution of the differential equation

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=7 e^{-x} \sin 2 x
$$

Question 4. [9] Solve the system of differential equations

$$
\left\{\begin{array}{c}
\frac{d x}{d t}+2 y=-x \\
2 \frac{d x}{d t}+\frac{d y}{d t}=-y .
\end{array}\right.
$$

