King Saud University
College of Science

Department of Physics and Astronomy

$2^{\text {nd }}$ term 1435-1436	Physics 103	First mid term
Monday $10 / 6 / 1436 ~ H^{30}{ }^{\text {th }}$ March 2015	7:00 $-8: 30$ PM	

Submit only this first page to the Examiner/ Invigilator

Name	
University number	
Section/ Dr Name	

Write your answers for each question in CAPITAL LETTERS in the table given

Q. 1	Q. 2	Q.3	Q.4	Q.5	
	c	a	b	d	d
	Q.6	Q.7	Q.8	Q.9	Q.10
A. e	e	b	e	d	
Q.11	Q.12	Q.13	Q.14	Q.15	
c	b	b	e	e	

Take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$ where ever needed

1	The dimension of $\frac{1}{2} \rho v^{2}$ (Where ρ is the density and v is the speed) is a) $\mathrm{M}^{-1} \mathrm{~L}^{5} \mathrm{~T}^{2}$ b) $\mathrm{ML} \mathrm{T}^{2}$ c) $M L^{-1} T^{-2}$ d) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ e) $\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}$
2	A jet plane lands with a speed of $100 \mathrm{~m} / \mathrm{s}$ and it comes to rest with constant de-acceleration $-5.00 \mathrm{~m} / \mathrm{s}^{2}$. From the instant the plane touches the runway, the time interval needed before it can come to rest is a) 20 s b) 8 s c) 22 s d) 10 s e)none of the above
3	A basketball player jumps straight up, and spends 0.8 s in the air before coming back down to the ground. The total vertical distance travelled by the player is a) 3.2 m b) 1.6 m c) 6.4 m d) 4.5 m e) 2 m
4	A ball is thrown straight up in the air. At the highest point, the ball's a) velocity and b)velocity is c) velocity and d) acceleration e) none of the acceleration are non-zero but its acceleration is nonzero, but above zero acceleration is are both its velocity is zero nonzero zero
5	A rock is dropped from rest from the top of a very high rise building. Approximately how far does the rock travel in the first 7 seconds of its free-fall? a) 350 m b) 123 m c) 176 m d) 240 m e) 480 m
6	A mass is dropped from a height h above the ground, and freely falls under the influence of gravity. Which of the following graphs is correct? Consider the "up" direction to be positive. a) b) c) d) e)
7	A hiker begins a trip by first walking 3.0 km to the west then walks 4.0 km in north direction, what is the magnitude and direction of his resultant displacement? a) $5 \mathrm{Km}, 53.2^{\circ}$ from b) $7 \mathrm{Km}, 53.2^{\circ}$ from c) $25 \mathrm{Km}, 63.8^{\circ}$ from d) $7 \mathrm{Km}, 36.8^{\circ}$ from e) $5 \mathrm{Km}, 53.1^{\circ}$ from the north to the west the east to the north the east to the north the east to the north west to north
8.	The magnitude of the sum of two vectors \mathbf{A} and \mathbf{B} is maximum, a) when angle \mathbf{b} when vectors \mathbf{A} c) when vectors \mathbf{A} d) Vectors \mathbf{A} and \mathbf{B} e) None of between vectors and \mathbf{B} are in the and \mathbf{B} are in are perpendicular these \mathbf{A} and \mathbf{B} is 45° same direction opposite direction
9	Example of two dimension motion is : a) A car moving on a straight high way b) An athlete running on a 100 m long straight runway c) Under no air resistance, a ball dropped from the top of building.

d) A particle moving in a straight line on a frictionless horizontal surface.
e) A bag dropped from an aircraft flying horizontally

10 The position of a particle is given by: $\mathbf{r}=3 t \mathbf{i}+2 t^{2} \mathbf{j}$ where t is in seconds and r is in meters. The magnitude of $v(t)$ at $t=7 \mathrm{sec}$ is:
a) $15.2 \mathrm{~ms}^{-1}$
b) $20.22 \mathrm{~ms}^{-1}$
c) $16.22 \mathrm{~ms}^{-1}$
d) $28.16 \mathrm{~ms}^{-1}$
e) $12.37 \mathrm{~ms}^{-1}$

11 A particle thrown upward moves in its parabolic path. At what point along its path are the velocity and acceleration vectors for the particle perpendicular to each other.
$\begin{aligned} & \text { a) The launching b) the landing c) the highest point d) depends on angle e) no where } \\ & \text { point }\end{aligned}$ point
12 A projectile projected with velocity $30 \mathrm{~m} / \mathrm{s}$ so that the horizontal range is 60 m . (Take g = $10 \mathrm{~m} / \mathrm{s}^{2}$). The angle of projection is:
a) 15°
b) 21°
c) 32°
d) 39°
e) 45°

13 A football player kicks a ball at an angle of 30° with an initial speed of $60 \mathrm{~m} / \mathrm{s}$. Assume that the ball travels in a vertical plane, the time at which the ball reaches the highest point is:
a) 2.7 s
b) 3.1 s
c) 3.6 s
d) 4.0 s
e) 2.0 s

14 The example, where the velocity is changing while the speed remains constant is
a) uniform motion
b) it is impossible
c) Motion of object d) projectile motion under free fall
e) uniform circular motion

15 A particle moves in a circular path of radius r with speed v. it then increases its speed to 3 v while travelling along the same circular path. The centripetal acceleration of the particle has changed by a factor of
a) 0.25
b) 0.5
c) 2
d) 4
e) 9

The end

