IE-352

Section 3, CRN: 48706/7/8
Section 4, CRN: 58626/7/8
Second Semester 1438-39 H (Spring-2018) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Sunday, March 18, 2018 (01/07/1439H)
Milling Exercise + ANSWERS

Name:	Student Number:
AHMED M. EL-SHERBEENY, PHD	4

Material-Removal Rate, Power, Torque, and Cutting Time in Slab Milling

A slab-milling operation is being carried out on a $300-m m$-long, $100-\mathrm{mm}$ wide annealed mild-steel block at a feed f of $0.25 \mathrm{~mm} /$ tooth and a depth of cut 3.0 mm . The cutter is $D=50 \mathrm{~mm}$ in diameter, has 20 straight teeth, rotates at 100 rpm and, by definition, is wider than the block to be machined. Calculate the following:
a) material-removal rate, $M R R$
b) estimated power dissipated, Power
c) estimated torque required for this operation, Torque
d) cutting time, t

Given:

- Process: slab-milling
- Workpiece material: annealed mild-steel
- $l=300 \mathrm{~mm}$
- $w=100 \mathrm{~mm}$
- $f=0.25 \mathrm{~mm} /$ tooth
- $d=3.0 \mathrm{~mm}$
- $D=50 \mathrm{~mm}$
- $n=20$
- $N=100 \mathrm{rev} / \mathrm{min}$

Solution:
a) material-removal rate, $M R R=w d v$

$$
\begin{aligned}
& f=\frac{v}{N n} \\
& \Rightarrow v=f N n=\left(0.25 \frac{\mathrm{~mm}}{\text { tooth }}\right)\left(100 \frac{\text { rev }}{\text { min }}\right)\left(20 \frac{\text { teeth }}{\text { rev }}\right)=500 \mathrm{~mm} / \mathrm{min} \\
& \Rightarrow M R R=w d v=(100 \mathrm{~mm})(3.0 \mathrm{~mm})\left(500 \frac{\mathrm{~mm}}{\mathrm{~min}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right) \\
& \quad=2500 \mathrm{~mm}^{3} / \mathrm{s}
\end{aligned}
$$

$$
M R R=2500 \mathrm{~mm}^{3} / \mathrm{s}
$$

b) power dissipated, Power
remember, $u_{t}=\frac{\text { Power }}{M R R}$
u_{t} can be obtained from specific power table in ch. 21, for different workpiece materials

Approximate Range of Energy Requirements in Cutting Operations at the Drive Motor of the Machine Tool (for Dull Tools, Multiply by I.25)

	Specific energy	
Material	$\mathrm{W} \cdot \mathrm{s} / \mathrm{mm}^{3}$	
Aluminum alloys	$0.4-1$	
Cast irons	$1.1-5.4$	
Copper alloys	$1.4-3.2$	
High-temperature alloys	$3.2-8$	
Magnesium alloys	$0.3-0.6$	
Nickel alloys	$4.8-6.7$	
Refractory alloys	$3-9$	
Stainless steels	$2-5$	
Steels	$2-9$	
Titanium alloys	$2-5$	

Titanium alloys 2-5 $3 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{mm}^{3}$
\Rightarrow Power $=u_{t} \cdot M R R=\left(3 \frac{\mathrm{~W} \cdot \mathrm{~s}}{\mathrm{~mm}^{3}}\right) \cdot\left(2500 \frac{\mathrm{~mm}^{3}}{\mathrm{~s}}\right)=7,500 \mathrm{~W}$
Power $=7.5 \mathrm{~kW}$
c) torque required, Torque

$$
\begin{aligned}
& \text { Power }=\text { Torque } \cdot \omega \\
& \begin{aligned}
\Rightarrow \text { Torque } & =\frac{\text { Power }}{\omega}=\frac{7500 \mathrm{~W}}{2 \pi \mathrm{~N}}=\frac{7500 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}}{(2 \pi)(100) \mathrm{rad} / \mathrm{min}} * \frac{60 \mathrm{~s}}{\mathrm{~min}} \\
& =716.2 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
\end{aligned}
$$

$$
\text { Torque }=716 \mathrm{~N} \cdot \mathrm{~m}
$$

d) cutting time, t
$t=\frac{l+l_{c}}{v}$
For $D \gg d \Rightarrow l_{c}$ can be approximated using: $l_{c}=\sqrt{D d}$
$\Rightarrow l_{c}=\sqrt{D d}=\sqrt{(50 \mathrm{~mm}) \cdot(3 \mathrm{~mm})}=12.247 \mathrm{~mm}$
$\Rightarrow t=\frac{l+l_{c}}{v}=\frac{300 \mathrm{~mm}+12.247 \mathrm{~mm}}{500 \mathrm{~mm} / \mathrm{min}}=0.6245 \mathrm{~min}$

Note that if we did not do the above assumption for l_{c}

$$
\begin{aligned}
& \Rightarrow l_{c}=\sqrt{d(D-d)}=\sqrt{(3.0 \mathrm{~mm}) \cdot(50 \mathrm{~mm}-3.0 \mathrm{~mm})}=11.873 \mathrm{~mm} \\
& \Rightarrow t=\frac{l+l_{c}}{v}=\frac{300 \mathrm{~mm}+11.873 \mathrm{~mm}}{500 \mathrm{~mm} / \mathrm{min}}=0.6237 \mathrm{~min}
\end{aligned}
$$

$$
t=37.4 s
$$

Thus the above assumption was justified.

