IE-352

Section 3, CRN: 48706/7/8
Section 4, CRN: 58626/7/8
Second Semester 1438-39 H (Spring-2018) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Monday, March 26, 2018 (09/07/1439H)
Milling Exercise 2 + ANSWERS

Name:	Student Number:

Material-removal Rate, Power Required, and Cutting Time in Face Milling

Assume that $D=150 \mathrm{~mm}, \quad w=60 \mathrm{~mm}, \quad l=500 \mathrm{~mm}, \quad d=3 \mathrm{~mm}$, $v=0.6 \mathrm{~m} / \mathrm{min}$ and $N=100 \mathrm{rpm}$. The cutter has 10 inserts, and the workpiece material is a high-strength aluminum alloy. Calculate the following:
a) material-removal rate, $M R R$
b) cutting time, t
c) feed per tooth, f
d) estimated power required, Power

Given:

- Process: face milling (according to figure on the right)
- Workpiece material: high-strength aluminum alloy
- $D=150 \mathrm{~mm}$
- $w=60 \mathrm{~mm}$
- $l=500 \mathrm{~mm}$
- $d=3 \mathrm{~mm}$
- $v=0.6 \mathrm{~m} / \mathrm{min}$
- $N=100 \mathrm{rev} / \mathrm{min}$
- $n=10$

Solution:
a) material-removal rate, $M R R=w d v$ (see figure)

$$
\begin{aligned}
& \Rightarrow M R R=w d v=(60 \mathrm{~mm})(3 \mathrm{~mm})\left(600 \frac{\mathrm{~mm}}{\mathrm{~min}}\right) \\
& =\left(108,000 \mathrm{~mm}^{3} / \mathrm{min}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=1800 \mathrm{~mm}^{3} / \mathrm{s}
\end{aligned}
$$

$$
M R R=1,800 \mathrm{~mm}^{3} / \mathrm{s}
$$

b) cutting time, t

$$
t=\frac{l+2 l_{c}}{v}
$$

- Note, can you explain here why it's $2 l_{c}$ instead of l_{c} ?
- Also, can you explain here why $l_{c}=D / 2=75 \mathrm{~mm}$?
$\Rightarrow t=\frac{l+2(D / 2)}{v}=\frac{500 \mathrm{~mm}+150 \mathrm{~mm}}{600 \mathrm{~mm} / \mathrm{min}}=1.083 \mathrm{~min}$

$t=65.0 s$

Let's test the above assumption. Just as with peripheral milling, l_{c} for face milling can be determined from the following formula (note how in face milling, d is replaced with w; compare the two figures above):

$$
\begin{aligned}
& l_{c}=\sqrt{w(D-w)}=\sqrt{(60 \mathrm{~mm}) \cdot(150 \mathrm{~mm}-60 \mathrm{~mm})}=73.485 \mathrm{~mm} \\
& \Rightarrow t=\frac{l+2 l_{c}}{v}=\frac{500 \mathrm{~mm}+146.97 \mathrm{~mm}}{600 \mathrm{~mm} / \mathrm{min}}=1.078 \mathrm{~min}
\end{aligned}
$$

$$
t \quad t=64.7 \mathrm{~s}
$$

Thus the first assumption was justified.
c) feed per tooth, f

$$
\begin{aligned}
f=\frac{v}{N \cdot n}=\frac{600 \mathrm{~mm} / \mathrm{min}}{(100 \mathrm{rev} / \mathrm{min}) \cdot(10 \text { teeth } / \mathrm{rev})} & =0.60 \mathrm{~mm} / \text { tooth } \\
& >\boldsymbol{f}=\mathbf{0 . 6} \mathbf{~ m m} / \text { tooth }
\end{aligned}
$$

d) estimated power required, Power
remember, $u_{t}=\frac{\text { Power }}{M R R}$
u_{t} can be obtained from specific power table in ch. 21, for different workpiece materials
\Rightarrow for high-strength aluminum alloy, we can assume a value of $1.1 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{mm}^{3}$

Approximate Range of Energy Requirements in Cutting Operations at the Drive Motor of the Machine Tool (for Dull Tools, Multiply by I.25)

	$\frac{\text { Specific energy }}{}$
Material	$\mathrm{W} \cdot \mathrm{s} / \mathrm{mm}^{3}$
Aluminum alloys	$0.4-1$
Cast irons	$1.1-5.4$
Copper alloys	$1.4-3.2$
High-temperature alloys	$3.2-8$
Magnesium alloys	$0.3-0.6$
Nickel alloys	$4.8-6.7$
Refractory alloys	$3-9$
Stainless steels	$2-5$
Steels	$2-9$
Titanium alloys	$2-5$

\Rightarrow Power $=u_{t} \cdot M R R=\left(1.1 \frac{\mathrm{~W} \cdot \mathrm{~s}}{\mathrm{~mm}^{3}}\right) \cdot\left(1800 \frac{\mathrm{~mm}^{3}}{\mathrm{~s}}\right)=1,980 \mathrm{~W}$

$$
\text { Power }=1.98 \mathrm{~kW}
$$

