

IE-352 Section 3, CRN: 48706/7/8 Section 4, CRN: 58626/7/8 Second Semester 1438-39 H (Spring-2018) – 4(4,1,2) "MANUFACTURING PROCESSES – 2"

Monday, March 26, 2018 (09/07/1439F		
Milling Exercise 2 + ANSWERS		
Name:	Student Number:	

Material-removal Rate, Power Required, and Cutting Time in Face Milling

4

Assume that D = 150 mm, w = 60 mm, l = 500 mm, d = 3 mm, v = 0.6 m/min and N = 100 rpm. The cutter has 10 inserts, and the workpiece material is a high-strength aluminum alloy. Calculate the following:

- a) material-removal rate, MRR
- b) cutting time, t

AHMED M. EL-SHERBEENY, PHD

- c) feed per tooth, f
- d) estimated power required, Power

Given:

- Process: face milling (according to figure on the right)
- Workpiece material: *high-strength* aluminum alloy
- D = 150 mm
- w = 60 mm
- l = 500 mm
- d = 3 mm
- v = 0.6 m/min
- N = 100 rev/min
- n = 10

King Saud University – College of Engineering – Industrial Engineering Dept.

Solution:

جـــامــعـــة الملكسعود

King Saud Universit

a) material-removal rate, MRR = wdv (see figure)

 $\Rightarrow MRR = wdv = (60 mm)(3 mm) \left(600 \frac{mm}{min}\right)$ $= (108,000 mm^3/min) \left(\frac{1 min}{60 s}\right) = 1800 mm^3/s$

 $MRR = 1,800 \ mm^3/s$

Let's test the above assumption. Just as with peripheral milling, l_c for face milling can be determined from the following formula (note how in face milling, d is replaced with w; compare the two figures above):

$$l_{c} = \sqrt{w(D - w)} = \sqrt{(60 \text{ mm}) \cdot (150 \text{ mm} - 60 \text{ mm})} = 73.485 \text{ mm}$$

$$\Rightarrow t = \frac{l + 2l_{c}}{v} = \frac{500 \text{ mm} + 146.97 \text{ mm}}{600 \text{ mm/min}} = 1.078 \text{ min}$$

$$\blacktriangleright t = 64.7 \text{ s}$$

Thus the first assumption was justified.

c) feed per tooth, *f*

جـــامـعــة الملك سعود King Saud University

$$f = \frac{v}{N \cdot n} = \frac{600 \text{ mm/min}}{(100 \text{ rev/min}) \cdot (10 \text{ teeth/rev})} = 0.60 \text{ mm/tooth}$$

$$\blacktriangleright f = 0.6 mm/tooth$$

d) estimated power required, Power

remember,
$$u_t = \frac{Power}{MRR}$$

 u_t can be obtained from specific power table in ch. 21, for different workpiece materials

 \Rightarrow for *high-strength* aluminum alloy, we can assume a value of $1.1 W \cdot s/mm^3$

$$\Rightarrow Power = u_t \cdot MRR = \left(1.1 \ \frac{W \cdot s}{mm^3}\right) \cdot \left(1800 \frac{mm^3}{s}\right) = 1,980 W$$

	Specific energy	
Material	$W \cdot s/mm^3$	
Aluminum alloys	0.4–1	
Cast irons	1.1-5.4	
Copper alloys	1.4-3.2	
High-temperature alloys	3.2-8	
Magnesium alloys	0.3-0.6	
Nickel alloys	4.8-6.7	
Refractory alloys	3–9	
Stainless steels	2-5	
Steels	2-9	
Titanium alloys	2-5	

$$Power = 1.98 \, kW$$