Chem 256
Spectroscopic Analytical Methods

Ultraviolet-Visible and Infrared Spectrophotometry

Ahmad Aqel Ifseisi
Assistant Professor of Analytical Chemistry
College of Science, Department of Chemistry
King Saud University
P.O. Box 2455 Riyadh 11451 Saudi Arabia
Building: 05, Office: 2A/149 & AA/53
Tel. 014674198, Fax: 014675992
Web site: http://fac.ksu.edu.sa/aifseisi
E-mail: ahmad3qel@yahoo.com
aifseisi@ksu.edu.sa
Molecular spectroscopy

Is the study of the **electromagnetic radiation** absorbed and emitted by molecules.

The combination of atoms into molecules leads to the creation of unique types of energetic states and therefore unique spectra of the transitions between these states.

- **Molecular rotations**
 (e.g., rotational and microwave spectroscopy).

- **Molecular vibration**
 (e.g., infrared and Raman spectroscopy).

- **Electronic states**
 (e.g., visible and ultraviolet spectroscopy and fluorescence spectroscopy).
Absorption Spectra

An absorption spectrum is a plot of absorbance versus wavelength.

Absorbance could also be plotted against wavenumber or frequency.

One plot of absorbance versus wavelength is called a spectrum; two or more plots are called spectra.
The absorption spectra vary widely in appearance; some are made up of numerous sharp peaks, whereas others consist of smooth continuous curves.

The nature of a spectrum is influenced by such variables as

- The **complexity**,
- The **physical state**,
- The **environment** of the absorbing species.

More fundamental, however, are the differences between absorption spectra for **atoms** and those for **molecules**.
Energy level diagram showing some of the energy changes that occur during absorption of infrared (IR), visible (VIS), and ultraviolet (UV) radiation by a molecular species. Note that with some molecules a transition from E_0 to E_1 may require UV radiation instead of visible radiation. With other molecules, the transition from E_0 to E_2 may occur with visible radiation instead of UV radiation. Only a few vibrational levels (0–4) are shown. The rotational levels associated with each vibrational level are also exist (not shown in this figure), they are too closely spaced.

UV range 10 – 400 nm
Vis range 380 – 750 nm
IR range 700 nm – 1 mm
Typical **visible** absorption spectra. The compound is 1,2,4,5-tetrazine.

In (a), the spectrum is shown in the gas phase where many lines due to electronic, vibrational, and rotational transitions are seen.

In a nonpolar solvent (b), the electronic transitions can be observed, but the vibrational and rotational structure has been lost.

In a polar solvent (c), the strong intermolecular forces have caused the electronic peaks to blend together to give only a single smooth absorption peak.
The Figure suggests that molecular absorption in the ultraviolet and visible regions produces absorption bands made up of closely spaced lines.

A real molecule has many more energy levels than can be shown in the diagram. Thus, a typical absorption band consists of a large number of lines.

In a solution, the absorbing species are surrounded by solvent molecules, and the band nature of molecular absorption often becomes blurred because collisions tend to spread the energies of the quantum states, giving smooth and continuous absorption peaks.

Some typical ultraviolet absorption spectra
UV/Vis Spectra for Molecules and Ions

The valence electrons in organic molecules, and inorganic anions such as CO$_3^{2-}$, occupy quantized sigma bonding, σ, pi bonding, π, and nonbonding, n, molecular orbitals.

Unoccupied sigma antibonding, σ^*, and pi antibonding, π^*, molecular orbitals often lie close enough in energy that the transition of an electron from an occupied to an unoccupied orbital is possible.
When a molecule or ion absorbs ultraviolet or visible radiation it undergoes a change in its **valence electron configuration**.

Four types of transitions between quantized energy levels account for molecular UV/Vis spectra.

Electronic transitions involving \(n, \sigma, \text{ and } \pi \) molecular orbitals

<table>
<thead>
<tr>
<th>Transition</th>
<th>Wavelength Range (nm)</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma \rightarrow \sigma^*)</td>
<td>< 200</td>
<td>C—C, C—H</td>
</tr>
<tr>
<td>(n \rightarrow \sigma^*)</td>
<td>160–260</td>
<td>H(_2)O, CH(_3)OH, CH(_3)Cl</td>
</tr>
<tr>
<td>(\pi \rightarrow \pi^*)</td>
<td>200–500</td>
<td>C=C, C=O, C=N, C≡C</td>
</tr>
<tr>
<td>(n \rightarrow \pi^*)</td>
<td>250–600</td>
<td>C=O, C=N, N=N, N=O</td>
</tr>
</tbody>
</table>

Of these transitions, the most important are the \(n \rightarrow \pi^* \) and \(\pi \rightarrow \pi^* \), because they involve functional groups that are characteristic of the analyte and wavelengths that are easily accessible. The bonds or functional groups in a molecule responsible for the absorption of a particular wavelength of light in ultraviolet and visible radiation are called **chromophores**.
<table>
<thead>
<tr>
<th>Chromophore</th>
<th>Example</th>
<th>Solvent</th>
<th>$\lambda_{\text{max}}, \text{ nm}$</th>
<th>ε_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkene</td>
<td>$C_6H_{13}CH\equiv CH_2$</td>
<td>n-Heptane</td>
<td>177</td>
<td>13,000</td>
</tr>
<tr>
<td>Conjugated alkene</td>
<td>$CH_2\equiv CHCH\equiv CH_2$</td>
<td>n-Heptane</td>
<td>217</td>
<td>21,000</td>
</tr>
<tr>
<td>Alkyne</td>
<td>$C_5H_{11}C\equiv C\equiv CH_3$</td>
<td>n-Heptane</td>
<td>178</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>196</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td>160</td>
</tr>
<tr>
<td>Carbonyl</td>
<td>CH_3CCH_3</td>
<td>n-Hexane</td>
<td>186</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>280</td>
<td>16</td>
</tr>
<tr>
<td>Carboxyl</td>
<td>CH_3COH</td>
<td>Ethanol</td>
<td>204</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>293</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Amido</td>
<td>$CH_3C\equiv NH_2$</td>
<td>Water</td>
<td>214</td>
<td>60</td>
</tr>
<tr>
<td>Azo</td>
<td>$CH_3\equiv N\equiv NCH_3$</td>
<td>Ethanol</td>
<td>339</td>
<td>5</td>
</tr>
<tr>
<td>Nitro</td>
<td>CH_3NO_2</td>
<td>Isooctane</td>
<td>280</td>
<td>22</td>
</tr>
<tr>
<td>Nitroso</td>
<td>C_4H_9NO</td>
<td>Ethyl ether</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>Nitrate</td>
<td>$C_2H_5ONO_2$</td>
<td>Dioxane</td>
<td>665</td>
<td>20</td>
</tr>
<tr>
<td>Aromatic</td>
<td>Benzene</td>
<td>n-Hexane</td>
<td>204</td>
<td>7,900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>256</td>
<td>200</td>
</tr>
</tbody>
</table>
UV/Vis absorption bands are often significantly broader than those for IR absorption. When a species absorbs UV/Vis radiation, the transition between electronic energy levels may also include a transition between vibrational energy levels. The result is a number of closely spaced absorption bands that merge together to form a **single broad** absorption band.
Infrared Spectra for Molecules and Polyatomic Ions

Infrared radiation generally is not energetic enough to cause electronic transitions, but it can induce transitions in the vibrational and rotational states associated with the ground electronic state of the molecule.

Energy level diagram showing difference between the absorption of infrared radiation (left) and ultraviolet–visible radiation (right).
For absorption to occur, the radiation source has to emit frequencies corresponding exactly to the energies indicated by the lengths of the arrows (shown in the figures).

Vibrational energy levels are quantized; that is, a molecule may have only certain, discrete vibrational energies.

e.g., a carbon–carbon single bond (C—C) absorbs infrared radiation at a lower energy than a carbon–carbon double bond (C=C) because a C—C bond is weaker than a C=C bond.

Types of molecular vibrations. The plus sign indicates motion out of the page; the minus sign indicates motion into the page.
Group frequency and fingerprint regions of the mid-infrared spectrum

400 – 4000 cm$^{-1}$
<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Absorption Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>O—H</td>
<td>Aliphatic and aromatic</td>
</tr>
<tr>
<td>NH₂</td>
<td>Also secondary and tertiary</td>
</tr>
<tr>
<td>C—H</td>
<td>Aromatic</td>
</tr>
<tr>
<td>C—H</td>
<td>Aliphatic</td>
</tr>
<tr>
<td>C≡N</td>
<td>Nitrile</td>
</tr>
<tr>
<td>C≡C—</td>
<td>Alkyne</td>
</tr>
<tr>
<td>COOR</td>
<td>Ester</td>
</tr>
<tr>
<td>COOH</td>
<td>Carboxylic acid</td>
</tr>
<tr>
<td>C═O</td>
<td>Aldehydes and ketones</td>
</tr>
<tr>
<td>CONH₂</td>
<td>Amides</td>
</tr>
<tr>
<td>C═C—</td>
<td>Alkene</td>
</tr>
<tr>
<td>φ—O—R</td>
<td>Aromatic</td>
</tr>
<tr>
<td>R—O—R</td>
<td>Aliphatic</td>
</tr>
</tbody>
</table>
Instrumentation
Instrument Designs for Molecular UV/Vis Absorption

Several common terms are used to describe complete instruments.

A **spectrometer** is a spectroscopic instrument that uses a monochromator or polychromator in conjunction with a transducer to convert the radiant intensities into electrical signals.

Photometers (or **filter photometer**) use a filter (absorption or interference filters) for wavelength selection in conjunction with a suitable radiation transducer.

Spectrophotometers are instruments for measuring absorbance that uses a monochromator to select the wavelength.

Both photometers and spectrophotometers can be obtained in **single- and double-beam** varieties.
Single-Beam Instruments

A simple and inexpensive spectrophotometer. Has a single optical path between the source and detector.

The instrument is calibrated to 0% \(T \) while using a shutter to block the source radiation from the detector. After removing the shutter, the instrument is calibrated to 100% \(T \) using an appropriate blank. The blank is then replaced with the sample, and its transmittance is measured. Since the source’s incident power and the sensitivity of the detector vary with wavelength, the instrument must be recalibrated whenever the wavelength is changed.
Double-beam instruments offer the advantage that they compensate for all but the most rapid fluctuations in the radiant output of the source. They also compensate for wide variations of source intensity with wavelength. Furthermore, the double-beam design is well suited for continuous recording of absorption spectra.
Double-beam-in-space instrument

Double-beam-in-time instrument
A linear photodiode array consists of multiple detectors, or channels, allowing an entire spectrum to be recorded in as little as 0.1 s. Source radiation passing through the sample is dispersed by a grating.

One advantage of a linear photodiode array is the speed of data acquisition, which makes it possible to collect several spectra for a single sample. Individual spectra are added and averaged to obtain the final spectrum. This process of **signal averaging** improves a spectrum’s signal-to-noise ratio.
Chem 256
Spectroscopic Analytical Methods

Molecular Photoluminescence Spectroscopy

Ahmad Aqel Ifseisi
Assistant Professor of Analytical Chemistry
College of Science, Department of Chemistry
King Saud University
P.O. Box 2455 Riyadh 11451 Saudi Arabia
Building: 05, Office: 2A/149 & AA/53
Tel. 014674198, Fax: 014675992
Web site: http://fac.ksu.edu.sa/aifseisi
E-mail: ahmad3qel@yahoo.com
aifseisi@ksu.edu.sa
Photoluminescence is divided into two categories:
- Fluorescence.
- Phosphorescence.

singlet excited state
An excited state in which all electron spins are paired.

triplet excited state
An excited state in which unpaired electron spins occur.
- Absorption of an ultraviolet or visible photon promotes a valence electron from its ground state to an excited state with conservation of the electron’s spin (singlet excited state).

- Emission of a photon from a singlet excited state to a singlet ground state, or between any two energy levels with the same spin, is called fluorescence.

- The average lifetime of the electron in the excited state is only 10^{-5}–10^{-8} s.

- In some cases an electron in a singlet excited state is transformed to a triplet excited state in which its spin is no longer paired with that of the ground state.

- Emission between a triplet excited state and a singlet ground state, or between any two energy levels that differ in their respective spin states, is called phosphorescence.

- Because the average lifetime for phosphorescence ranges from 10^{-4} to 10^{4} s, phosphorescence may continue for some time after removing the excitation source.
Molecular fluorescence and phosphorescence spectra

Energy level diagram for a molecule showing pathways for deactivation of an excited state:
- \(\text{vr} \): is vibrational relaxation,
- \(\text{ic} \): is internal conversion,
- \(\text{ec} \): is external conversion,
- \(\text{isc} \): is intersystem crossing.

The lowest vibrational energy level for each electronic state is indicated by the thicker line.
The ground state, is a singlet state labeled S_0. Absorption of a photon of correct energy excites the molecule to one of several vibrational energy levels in the first excited electronic state, S_1, or the second electronic excited state, S_2, both of which are singlet states.

Relaxation to the ground state from these excited states occurs by a number of mechanisms that are either:
- Radiationless (no photons are emitted) or
- Involve the emission of a photon.

The most likely pathway by which a molecule relaxes back to its ground state is that which gives the shortest lifetime for the excited state (by the fastest mechanism).
Radiationless Deactivation

Vibrational relaxation:
in which a molecule in an excited vibrational energy level loses energy as it moves to a lower vibrational energy level in the same electronic state. Vibrational relaxation is very rapid, with the molecule’s average lifetime in an excited vibrational energy level being 10^{-12} s or less.

Internal conversion:
in which a molecule in the ground vibrational level of an excited electronic state passes directly into a high vibrational energy level of a lower energy electronic state of the same spin state.

External conversion:
in which excess energy is transferred to the solvent or another component in the sample matrix.

Intersystem crossing:
in which a molecule in the ground vibrational energy level of an excited electronic state passes into a high vibrational energy level of a lower energy electronic energy state with a different spin state.
Radiation Deactivation
(Fluorescence & Phosphorescence)

Fluorescence:

Fluorescence occurs when a molecule in the lowest vibrational energy level of an excited electronic state returns to a lower energy electronic state by emitting a photon.

Fluorescence may return the molecule to any of several vibrational energy levels in the ground electronic state. Fluorescence, therefore, occurs over a range of wavelengths. Because the change in energy for fluorescent emission is generally less than that for absorption, a molecule’s fluorescence spectrum is shifted to higher wavelengths than its absorption spectrum.

Fluorescence is generally observed with molecules where the lowest energy absorption is a ($\pi \rightarrow \pi^*$) transition, although some ($n \rightarrow \pi^*$) transitions show weak fluorescence.
Phosphorescence:

Phosphorescence occurs when a molecule in the lowest vibrational energy level of an excited triplet electronic state returns to a lower-energy state with the opposite spin as the higher-energy state by emitting a photon.

Phosphorescence is most favorable for molecules that have \((n \rightarrow \pi^*) \) transitions, which have a higher probability for an intersystem crossing than do \((\pi \rightarrow \pi^*) \) transitions.
Excitation and Emission Spectra

Photoluminescence spectra are recorded by measuring the intensity of emitted radiation as a function of either the excitation or emission wavelength.

An **excitation spectrum** is obtained by monitoring emission at a fixed wavelength while varying the excitation wavelength.

When corrected for variations in source intensity and detector response, a sample’s excitation spectrum is nearly identical to its absorbance spectrum.

In an **emission spectrum** a fixed wavelength is used to excite the molecules, and the intensity of emitted radiation is monitored as a function of wavelength.

Example of molecular excitation and emission spectra.
Instrumentation

The basic design of instrumentation for monitoring molecular fluorescence and molecular phosphorescence is similar to that found for other spectroscopies.

Molecular Fluorescence

A typical fluorimeter contains an excitation source, sample cell, fluorescence detector.

Block diagram for molecular fluorescence spectrometer.

e.g. deuterium or Xe arc lamp
In contrast to instruments for absorption spectroscopy, the optical paths for the source and detector are usually positioned at an angle of 90°.
Instrumentation for molecular phosphorescence must discriminate between phosphorescence and fluorescence. Since the lifetime for fluorescence is much shorter than that for phosphorescence, discrimination is easily achieved by incorporating a delay between exciting and measuring phosphorescent emission.