
Moran model

The Moran model describes the evolution of a collection of cells that is maintained at a
constant population size of N . Thinking of the population genetics situation for which it
was developed, we will often call the cells individuals. In comparing the results here with
those given in the literature one must take into account that in genetics most organisms are
diploid (have two copies of their DNA), so the population in the Moran model commonly
consists of 2N copies of a locus.

1 Neutral case

In the simplest version of the model (with no selection or mutation), the dynamics of the
Moran model, which occur in continuous time, can be described as follows:

• Each individual is replaced at rate 1. That is, individual x lives for an exponentially
distributed amount with mean 1 and then is “replaced.”

• To replace individual x, we choose an individual at random from the population (in-
cluding x itself) to be the parent of the new individual.

Suppose now that each individual has one of two alleles A and a, and let Xt be the
number of copies of A. The transition rates for Xt are

i → i + 1 at rate bi = (N − i) · i

N

i → i− 1 at rate di = i · N − i

N
(1) Moranrates

where b is for birth and d is for death. In words, a’s are selected for possible replacement at
total rate N−i. The number of A’s will increase if an A is chosen to be the parent of the new
individual, an event of probability i/N . Similarly, A’s are selected for possible replacement
at total rate i. The number of A’s will decrease if an a is chosen to be the parent of the new
individual, an event of probability (N − i)/N . Note that bi = di.

Let τ = min{t : Xt = 0 or Xt = N} be the fixation time, i.e., the first time at which all
individuals have the same type. Since it is possible to reach the absorbing states 0 and N
starting from any interior state 0 < i < N we have Pi(τ < ∞) = 1

Moranabs Theorem 1. In the Moran model, the probability that A becomes fixed when there are ini-
tially i copies is i/N .

Proof. The rates for up and down jumps are the same, so (d/dt)EiXt = 0, and hence EiXt

is constant, i.e., Xt is a martingale. Intuitively this implies that

i = EiXτ = NPi(Xτ = N) (2) exitmart

To prove this we note that

i = EiXt = NPi(Xτ = N, τ ≤ t) + Ei(Xt; τ > t)

Letting t →∞ and noting Pi(τ > t) → 0, |Xt| ≤ N the desired result follows.
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Let Tk = min{t : Xt = k} be the hitting time of k. Writing Ēiτ = Ei(τ |TN < T0), we
can state

hitT Theorem 2. Let p = i/N . In the Moran model when N is large

Ēiτ ≈ −
N(1− p)

p
log(1− p) (3) Ethitcond

As p → 0, − log(1− p)/p → 1, so
Ē1τ ∼ N (4) Ethitcond0

Proof. Let Sj be the amount of time spent at j before time τ and note that

Eiτ =
N−1∑
j=1

EiSj (5) ETfix

Let Nj be the number of visits to j. Let q(j) = 2j(N − j)/N be the rate at which the chain
leaves j. Since each visit to j lasts for an exponential amount of time with mean 1/q(j), we
have

EiSj =
1

q(j)
EiNj (6) NytoSy

To compute EiNj, we begin by noting that

Pi(Nj ≥ 1) = Pi(Tj < ∞)

Letting T+
j = min{t : Xt = j and Xs 6= j for some s < t} be the time of the first return to

j, we have for n ≥ 1
Pi(Nj ≥ n + 1|Nj ≥ n) = Pj(T

+
j < ∞)

The last formula shows that, conditional on Nj ≥ 1, Nj has a geometric distribution with
success probability Pj(T

+
j = ∞). Combining this with our formula for Pi(Nj ≥ 1), we have

EiNj =
Pi(Tj < ∞)

Pj(T
+
j = ∞)

(7) ExNy

Since the average value of Xt is constant in time, the martingale argument in (2) shows
that for 0 ≤ i ≤ j

i = jPi(Tj < T0) + 0 · [1− Pi(Tj < T0)]

and solving gives

Pi(Tj < T0) =
i

j
Pi(Tj > T0) =

j − i

j
(8) PxTyltT0

Similar reasoning shows that for j ≤ i ≤ N ,

i = jPi(Tj < TN) + N [1− Pi(Tj < TN)]

and solving gives

Pi(Tj < TN) =
N − i

N − j
Pi(Tj > TN) =

i− j

N − j
(9) PxTyltTN
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When the process leaves j, it goes to j − 1 or j + 1 with equal probability, so

Pj(T
+
j = ∞) =

1

2
· Pj+1(Tj > TN) +

1

2
· Pj−1(Tj > T0)

=
1

2
· 1

N − j
+

1

2
· 1

j
=

N

2j(N − j)

Putting our results into (7) gives

EiNj =

{
i
j
· 2j(N−j)

N
i ≤ j

N−i
N−j

· 2j(N−j)
N

j ≤ i

Since q(j) = 2j(N − j)/N , (6) gives

EiSj =

{
i
j

i ≤ j

N−i
N−j

j ≤ i
(10) ExSy

If we let h(i) = Pi(TN < T0) and let pt(i, j) be the transition probability for the Moran
model, then it follows from the definition of conditional probability and the Markov property
that

p̄t(i, j) =
Pi(Xt = j, TN < T0)

Pi(TN < T0)
= pt(i, j) ·

h(j)

h(i)

Integrating from t = 0 to ∞, we see that the conditioned chain has

ĒiSj =

∫ ∞

0

p̄t(i, j) dt =
h(j)

h(i)
EiSj (11) ExSycond

h(i) = i/N , so h(j)/h(i) = j/i and using the formula for EiSj given in (10), we have

ĒiSj =

{
1 i ≤ j
j
i
· N−i

N−j
j ≤ i

(12) ExSycneut

By the reasoning that led to (5),

Ēiτ =
N−1∑
j=1

ĒiSj =
N−1∑
j=i

1 +
N − i

i
·

i−1∑
j=1

j

N − j

The first sum is N − i. For the second we note that

i−1∑
j=1

j

N − j
= N

i−1∑
j=1

j/N

1− j/N
· 1

N
≈ N

∫ p

0

u

1− u
du

where p = i/N . To evaluate the integral, we note that it is

=

∫ p

0

−1 +
1

1− u
du = −p− log(1− p)
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Combining the last three formulas gives

Ēiτ ≈ N(1− p) +
N(1− p)

p
(−p− log(1− p))

= −N(1− p)

p
log(1− p)

which gives (3).
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2 Directional selection

In this section, we will introduce selection letting 1 and 1− s be the relative fitnesses of the
two alleles, A and a. Let Xt be the number of A’s at time t. Thinking of the fitnesses as the
probability that an offspring of that type is viable, we can formulate the transition rates of
the Moran model with selection as

i → i + 1 at rate bi = (N − i) · i

N

i → i− 1 at rate di = i · N − i

N
· (1− s) (13) sMoranrates

In words, a’s are selected for possible replacement at total rate N − i. The number of A’s
will increase if an A is chosen to be the parent of the new individual, an event of probability
i/N . The reasoning is similar for the second rate, but in this case the replacement only
occurs with probability 1− s.

Theorem 3. In the Moran model with selection s > 0

Pi(TN < T0) =
1− (1− s)i

1− (1− s)N
(14) fixselect

When i = 1, the numerator is just s. If selection is strong, i.e., Ns is large, then (1−s)N ≈ 0
and the probability of fixation of a new mutant is just s. When Ns = O(1), (1− s) ≈ e−s,
so (14) can be written as

Pi(TN < T0) ≈
1− e−is

1− e−Ns
(15) fixselecta

This case in which s = O(1/N) is called the weak selection regime.

Proof. Let h(i) = Pi(TN < T0). Births happen at rate bi and deaths at rate di, so the
probability a birth occurs before a death is bi/(bi + di) and we have

h(i) =
bi

bi + di

h(i + 1) +
di

bi + di

h(i− 1)

Multiplying on each side by bi + di and rearranging, we have

h(i + 1)− h(i) =
di

bi

(h(i)− h(i− 1)) = (1− s)(h(i)− h(i− 1))

Now h(0) = 0, so if we let c = h(1) and iterate, it follows that

(?) h(i + 1)− h(i) = c(1− s)i

Summing we have

h(j) =

j−1∑
i=0

c(1− s)i = c
1− (1− s)j

s

We must have h(N) = 1 so c = s/(1− (1− s)N) and the desired result follows.

5



We can also prove the result using a more intuitive martingale argument.

Another derivation of (14). To motivate the computation, we begin by recalling the martin-
gale proof of Theorem 1. Let τ = T0 ∧ TN . When s = 0, EXt is constant in time, so we
have

i = N · Pi(Xτ = N) + 0 · Pi(Xτ = 0)

Solving, we have Pi(Xτ = N) = i/N .
When s > 0, bi/(bi + di) = 1/(2− s). A little calculation shows that

(1− s)i+1 1

2− s
+ (1− s)i−1 1− s

2− s

= (1− s)i 1− s

2− s
+ (1− s)i 1

2− s
= (1− s)i

so, in this case, the value of E(1− s)Xt stays constant in time. Reasoning as before,

(1− s)i = (1− s)NPi(Xτ = N) + 1 · [1− Pi(Xτ = N)]

Solving we have

Pi(Xτ = N) =
1− (1− s)i

1− (1− s)N

in agreement with (14).

One can generalize Theorem 2 to compute the expected time to fixation in the model
with selection. However to obtain more insight into what is happening during the fixation
of a favorable allele, we will take a different approach.

hitTs Theorem 4. In the Moran model with selection as N →∞

Ē1τ ∼
2

s
log N

Proof. The key is to establish that there are three phases in the fixation process.

1. While the advantageous A allele is rare, the number of A’s can be approximated by a
supercritical branching process.

2. While the frequency of A’s, uA ∈ [ε, 1−ε] there is very little randomness and uA follows
the solution of the logistic differential equation: duA/dt = suA(1− uA).

3. While the disadvantageous a allele is rare, the number of a’s can be approximated by
a subcritical branching process.

Phase 1. Let i be the number of A’s. If i/N is small, then the transition rates in (13)
simplify:

i → i + 1 at rate bi ≈ i

i → i− 1 at rate di ≈ (1− s)i
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This is a continuous time branching process in which each of the i individuals gives birth at
rate 1 and dies at rate 1− s. Letting Zt be the number of individuals at time t, it is easy to
see from the description that

d

dt
EZt = sEZt

so EZt = Z0e
st. A result from the theory of branching processes, see Athreya and Ney

(1972), shows that as t →∞
e−stZt → W (16) bplimit

The limit W may be 0, and will be if the branching process dies out, that is, if Zt = 0 for
some t. However, on the event that the process does not die out Ω∞ = {Zt > 0 for all t},
we have W > 0.

Let T1 be the first time that Xt = M = N/ log N . Using (16), we see that (e−stZt|Ω∞) →
W̄ = (W |W > 0) so if we condition on survival

N

log N
≈ exp(sT1)W̄

and solving gives

T1 ≈
1

s
log

(
N

W̄ log N

)
≈ 1

s
log(N)

Phase 2. Let T2 be the first time that Xt = N −M , where M = N/ log N . As we will now
show, during the second phase from T1 to T2 the process behaves like the solution of the
logistic differential equation. Let Xt be the number of copies of the mutant allele at time t,
and let Y N

t = Xt/N . Y N
t makes transitions as follows:

i/N → (i + 1)/N at rate bi = N − i · i

N

i/N → (i− 1)/N at rate di ≈ (1− s)i · N − i

N

When Y N
0 = i/N = y, the infinitesimal mean

d

dt
EY N

t = bi ·
1

N
+ di ·

(
− 1

N

)
= s

N − i

N
· i

N
= sy(1− y)

while the infinitesimal variance

d

dt
E(Y N

t − y0)
2 = (bi + di) ·

1

N2
= (2− s)

N − i

N
· i

N
· 1

N
→ 0

In this situation, results in Section 7.4 of Ethier and Kurtz (1986), show that as N →∞,
Y N

t converges to Yt, the solution of the logistic differential equation

dYt = sYt(1− Yt)

It is straightforward to check that the solution of this equation is

Yt =
1

1 + Ce−st
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where C = (1 − Y0)/Y0. In the case of interest, Y0 = 1/ log(N), so C ≈ log(N). Thus
Yt = 1− 1/(log N) when

(log N)e−t =
log N

log N − 1
− 1 =

1

log N − 1
∼ 1

log N

Solving, we find that T2 − T1 ≈ 2 log log N .

Phase 3. To achieve fixation of the A allele mutation after time T2, the M = N/(log N) a
alleles must decrease to 0. The number of a alleles, Zt, makes transitions

j → j + 1 at rate dN−j ≈ (1− s)j

j → j − 1 at rate bN−j ≈ j

That is, Zt is a continuous time branching process in which each of the j individuals gives
birth at rate (1− s) and dies at rate 1. By arguments in phase 1, EZt = Z0e

−st so it takes
about (1/s) log(2N) units of time to reach 0.

The times in the three phases were

Phase 1 (1/s) log(N)

Phase 2 log log(N)

Phase 3 (1/s) log(N)

and we have proved Theorem 4.
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3 Waiting for two mutations

Consider now a version of the Moran model in which initially all cells are type 0, and where
in addition to the usual replacement dynamics, cells of type i − 1 mutate to type i at rate
ui. In some treatments mutations are only allowed to occur at births, but this small detail
makes very little difference to results, so we will take the mathematically simpler approach
of having mutation as a separate process. In this section we are interested in τ2 the time
the first type 2 individual occurs. The first results in this direction are due to Nowak et al
(2004) and Iwasa et al (2004,2005). One can find a nice account in Chapter 12 of Nowak
(2006).

3.1 Stochastic tunneling

One boring scenario for producing a type 2 is that a type 1 mutation occurs and fixes in
the population, then a mutation to type 2 occurs. Writing a � b as short for a/b is small
or more precisely the assumption that aN/bN → 0, there is the following more interesting
possibility

stunnel Theorem 5. If 1/
√

u2 � N � 1/u1 then as N →∞

P (τ2 > t/Nu1

√
u2) → e−t

To begin to explain the intuition that underlies this result, let θ be the probability that
a type 1 gives birth to a type 2 before its family line dies out. By considering what happens
at the first event we see that

θ =
u2

u2 + 2
+

1

u2 + 2
(2θ − θ2) (17) STmuteq

To check this, it is convenient to write A for type 1 and B for type 2 then we have

A → 0 at rate
1 · (N − 1)

N
≈ 1

A → 2A at rate
(N − 1) · 1

N
≈ 1

A → B at rate u2

The mutation A → B will occur first with probability u2/(u2 + 2) in which case success
is assured (i.e., we will get a 2). Removal of the lone A, A → 0, will occur first with
probability 1/(u2 + 2) in which case success is impossible. Finally, A → 2A will occur first
with probability 1/(u2 +2) in which case success has probability 1− (1− θ)2 = 2θ− θ2 since
successes for the the two lineages is almost independent.

A little algebra converts (17) into θ2 + u2θ − u2 = 0 which has positive solution

−u2 +
√

u2
2 + 4u2

2
≈
√

u2 (18) STmut2

since u2
2 � u2 �

√
u2 when u2 is small. While the number of 1’s in the population remains

o(N), mutations to type 1 occur at rate Nu1. By (27) the probability that a type 1 mutation
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will give rise to a type 2 is ∼ √u2. Using Poisson thinning now we see that if σ2 is the time
of the first type 1 mutation that gives rise to a type 2 then σ2 is approximately exponential
with rate Nu1

√
u2.

Up to this point we have not used the assumptions of the theorem. To explain how they
enter the picture, we note

1. The number of type 1’s is a time change of a symmetric random walk, so if the number
reaches M then there will be of order M2 births before the family of type 1’s dies out. From
this we see that the type 2 mutation will first occur in a family that reaches size O(1/

√
u2).

If we want our assumption about the number of type 1’s up to τ2 to be o(N) then we must
have 1/

√
u2 � N .

2. We have a limit theorem for σ2 but we want one for τ2, so we need to show that τ2 − σ2

can be neglected. To do this we note that Theorem 2 implies

E1(TM |TM < T0) ∼ M

We have M = O(1/
√

u2) while Eσ2 = O(1/nu1
√

u2) so for τ2 − σ2 = o(Eσ2) we need
Nu1 � 1.

3.2 The assumption Nu1 → 0

Our next goal is to prove a result that is a little more general than Theorem 5 in that it
allows Nu1 → λ > 0.

Theorem 6. Suppose that Nu1 → λ ∈ [0,∞), u2 → 0, and N
√

u2 →∞ as N →∞. Then

P (τ2 > t/Nu1

√
u2) → exp

(
−

∫ t

0

h(s) ds

)
where h(s) = (1− e−2s/λ)/(1 + e−2s/λ) if λ > 0 and h(s) ≡ 1 if λ = 0.m2thm

If we let X1(t) be the number of type 1 individuals at time t then

P (τ2 > t) = E exp

(
−u2

∫ t

0

X1(s) ds

)
(19) expfort2

Step 1. We can replace X1(t) by a continuous-time critical branching process, Y (t), with
births and deaths at rate 1 and immigration at rate Nu1.

When X1(t) = k, type 1 mutations occur at rate (N − k)u1, while birth events in which a
type 1 individual replaces a type 0 individual occur at rate k(N − k)/N , so we have jumps

k → k + 1 at rate (k + Nu1) ·
N − k

N

k → k − 1 at rate k · N − k

N

10



The branching process with immigration, Y (t), has jumps

k → k + 1 at rate k + Nu1

k → k − 1 at rate k

Comparing rates we see that the process {X1(t), t ≥ 0} is a time-change of {Y (t), t ≥ 0},
in which time runs slower than in the branching process by a factor of (N −k)/N . That is if

T (t) =

∫ t

0

N −X1(s)

N
ds ≤ t

then the two processes can be coupled so that X1(t) = Y (T (t)), for all t ≥ 0. The time
change will have little effect as long as X1(t) is o(N).

Step 2. On the relevant time scale, the number of 1s stays small with high probability.

smallsize Lemma 1. Fix t > 0, ε > 0, and let Mt = max0≤s≤t/(Nu1
√

u2) X1(s). We have

lim
N→∞

P

(
Mt > εN

)
= 0.

Proof. Since in addition to the immigration, individuals give birth and die at the same rate,
the process {X1(s), s ≥ 0} is a submartingale. Because the rate of type 1 mutations is always
bounded above by Nu1, we have EX1(s) ≤ Nu1s for all s. By Doob’s Maximal Inequality,

P (Mt > εN) ≤
EX1(t/Nu1

√
u2)

εN
≤ 1

εN
· Nu1t

Nu1
√

u2

,

which goes to zero as N →∞, since N
√

u2 →∞.

Step 3. A useful lemma.

Steps 1 and 2 have shown that it is enough to prove the result for the branching process,
Y (t). Let Q denote the distribution of {Y (t), t ≥ 0}, and let Q1 denote the law of the process
starting from a single type 1 and modified to have no further mutations to type 1.

Q1toQ Lemma 2. The waiting time for the first type 2 in a system with type 1 mutations at rate
Nu1 satisfies

Q(τ2 ≤ t) = 1− exp

(
−Nu1

∫ t

0

Q1(τ2 ≤ s) ds

)
(20)

Proof. Type 1 mutations are a Poisson process with rate Nu1. A point at time t − s is
a success, i.e., produces a type 2 before time t with probability Q1(τ2 ≤ s). By results
for thinning a Poisson process, the number of successes by time t is Poisson with mean
Nu1

∫ t

0
Q1(τ2 ≤ s) ds. The result follows from the observation that Q(τ2 ≤ t) is the proba-

bility of at least one success in the Poisson process.
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Step 4. Compute g2(t) = Q1(τ2 ≤ t).

By considering what happens between time 0 and h

g2(t + h) = g2(t)[1− (2 + u2)h] + h[2g2(t)− g2(t)
2] + h · 0 + u2h · 1 + o(h)

where the four terms correspond to nothing happening, a birth, a death, and a mutation of
the original type 1 to type 2. Doing some algebra and letting h → 0

g′2(t) = −u2g2(t)− g2(t)
2 + u2 (21) g2DE

If we let r1 > r2 be the solutions of x2 + u2x− u2 = 0, i.e.,

ri =
−u2 ±

√
u2

2 + 4u2

2
(22) rieq

we can write this as g′2(t) = −(g2(t)− r1)(g2(t)− r2). A little calculus gives

g2(t) =
r1(1− e(r2−r1)t)

1− (r1/r2)e(r2−r1)t

Using the facts that r1 − r2 =
√

u2
2 + 4u2 ∼ 2

√
u2 and r1/r2 → −1 we see that if t

√
u2 → s

then

g2(t) ∼
√

u2 ·
1− e−2s

1 + e−2s
(23) g2t

Using (23) in Theorem 2 gives the result in Theorem 6.

3.3 The assumption N
√

u2 →∞
In the previous subsection we saw that the assumption Nu1 → 0 was needed to be able to
ignore the difference τ2− σ2 in the limit theorem. The assumption N

√
u2 →∞ implies that

the 1’s are o(N) until time τ2. In the other direction,

seqfix Theorem 7. If Nu1 → 0 and N
√

u2 → 0 then τ2 ⇒ exponential(u1) + exponential(Nu2),
the sum of two independent exponentials.

Proof. If N
√

u2 � 1 then the probability of fixation 1/N � √
u2 the probability a type 1

mutant gives rise to a type 2 before its family does out. From this we see that with high
probability a type 1 mutation destined for fixation will occur before the first type 2 mutation
occurs. Type 1 mutations that fix occur at rate Nu1 ·1/N . By Theorem 2 the average waiting
time for fixation conditioned that it occurs is ∼ N � 1/u1 so this can be ignored. One the
1’s fix the waiting time for the mutation to type 2 is exponential(Nu2).

There is interesting behavior in borderline case between Theorem 7 and 5.

borderth Theorem 8. Suppose that Nu1 → 0 and (Nu1
√

u2)
2 → γ > 0, and let

α =
∞∑

k=1

γk

(k − 1)!(k − 1)!

/ ∞∑
k=1

γk

k!(k − 1)!
> 1 (24) alphadef

then P (u1τ2 > t) → exp(−αt).
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In this case the mutation to type 2 occurs with positive probability before fixation occurs,
and at a time when then number of type 1’s, X1(t), is O(N). The keys to the analysis are

• If we start with X1(0) = Nε then N−1X1(Nt) converges to Yt where Yt is the Wright-
Fisher diffusion with infinitesimal generator x(1− x)d2/dx2.

• If Y (0) = y and u(y) is the probability that starting from X1(Nt) = Ny the process
hits 0 before reaching 1 or generating a type 2 mutation satisfies

x(1− x)u′′(x)− γxu(x) u(0) = u(1) = 1 (25) WFueq

The solution of (25) is

u(y) = c

∞∑
k=1

γk

k!(k − 1)!
(1− y)k

and the constant α = u′(0). The details are somewhat complicated so we refer the reader to
Durrett, Schmidt, and Schweinsberg (2007)

3.4 Type 1 mutations are not neutral

We return to the tunneling regime but now assume that type 1’s have fitness 1 + r.

Theorem 9. If 1/
√

u2 � N � 1/u1 and r = ρ
√

u2 then

P (τ2 > t/Nu1R
√

u2) where R =
1

2

(
ρ +

√
ρ2 + 4

)
Note that now the weak selection regime is r = O(

√
u2) rather than s = O(1/N) in (15).

This is intuitive since the proof of Theorem ?? tells us that first type 2 arises in a type 1
family that reaches size 1/

√
u2.

Let θ be the probability that a type 1 gives birth to a type 2 before its family line dies
out. By considering what happens at the first event we see that

θ =
u2

u2 + 2 + r
+

1 + r

u2 + 2 + r
(2θ − θ2) (26) selmuteq

A little algebra converts (26) into

(1 + r)θ2 + θ(u2 − r)− u2 = 0

which has positive solution

−(u2 − r) +
√

(u2 − r)2 + 4(1 + r)u2

2
≈ R

√
u2 (27) selmut2

since r = ρ
√

u2 � u2. The remainder of the proof is similar to that of Theorem 5.
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