Chapter 3: Fundamentals of Crystallography

ISSUES TO ADDRESS...

- What is the difference in atomic arrangement between crystalline and noncrystalline solids?
- How are crystallographic directions and planes named?
- Under what circumstances does a material property vary with the measurement direction?

Energy and Packing

- Non dense, random packing

- Dense, ordered packing

Dense, ordered packed structures tend to have lower energies.

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
-many ceramics
-some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures -rapid cooling
"Amorphous" = Noncrystalline

crystalline SiO_{2}
Adapted from Fig. 3.11(a), Callister \& Rethwisch 9 e.
- Si •Oxygen

noncrystalline SiO_{2}
Adapted from Fig. 3.11(b), Callister \& Rethwisch 9e.

Single vs Polycrystals

- Single Crystals
-Properties vary with direction: anisotropic.
-Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
-Properties may/may not vary with direction. -If grains are randomly oriented: isotropic.
($E_{\text {poly }}$ iron $=210 \mathrm{GPa}$)
-If grains are textured, anisotropic.

$E($ diagonal $)=273 \mathrm{GPa}$

$E($ edge $)=125 \mathrm{GPa}$

Data from Table 3.3,
Callister \& Rethwisch 9e.
(Source of data is R.W.
Hertzberg, Deformation and
Fracture Mechanics of
Engineering Materials, 3rd ed.,
John Wiley and Sons, 1989.)

Adapted from Fig. 6.19(b), Callister \& Rethwisch 9e.
[Fig. 6.19(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC (now the National Institute of Standards and Technology, Gaithersburg, MD).]

Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

7 crystal systems

14 crystal lattices
a, b, and c are the lattice constants

Polymorphism

- Two or more distinct crystal structures for the same material (allotropy/polymorphism)
iron system
titanium

$$
\alpha, \beta-\mathrm{Ti}
$$

carbon
diamond, graphite
liquid

BCC α-Fe

Introduction To Materials Science, Chapter 3, The structure of crystalline solids

Single Crystals and Polycrystalline Materials

Single crystal: atoms are in a repeating or periodic array over the entire extent of the material

Polycrystalline material: comprised of many small crystals or grains. The grains have different crystallographic orientation. There exist atomic mismatch within the regions where grains meet. These regions are called grain boundaries.

Grain Boundary

Introduction To Materials Science, Chapter 3, The structure of crystalline solids Polycrystalline Materials

Mechanical Engineering Department, King Saud University, P.O. Box 800,

Point Coordinates

Point coordinates for unit cell center are
$a / 2, b / 2, c / 2 \quad 1 / 21 / 21 / 2$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants \rightarrow identical position in another unit cell

Crystallographic Directions

Algorithm

1. Determine coordinates of vector tail, pt. 1:
$x_{1}, y_{1}, \& z_{1}$; and vector head, pt. 2: $x_{2}, y_{2}, \& z_{2}$.
2. Tail point coordinates subtracted from head point coordinates.
3. Normalize coordinate differences in terms of lattice parameters a, b, and c :

$$
\frac{x_{2}-x_{1}}{a} \frac{y_{2}-y_{1}}{b} \frac{z_{2}-z_{1}}{c}
$$

4. Adjust to smallest integer values
5. Enclose in square brackets, no commas
ex:
pt. $1 \quad x_{1}=0, y_{1}=0, z_{1}=0$
pt. $2 x_{2}=a, y_{2}=0, z_{2}=c / 2$

$$
[U V W]
$$

$$
\Rightarrow \quad 1,0,1 / 2 \Rightarrow 2,0,1
$$

$$
=>[201]
$$

Crystallographic Directions

Example 2:

$$
\begin{array}{lll}
\text { pt. } 1 & x_{1}=a, & y_{1}=b / 2, \\
\text { pt. } 2 & z_{1}=0 \\
x_{2}=-a, & y_{2}=b, & z_{2}=c \\
& \frac{-a-a}{a} & \frac{b-b / 2}{b} \\
= & \frac{c-0}{c} \\
= & -2,1 / 2,1
\end{array}
$$

Multiplying by 2 to eliminate the fraction
$-4,1,2$ => [$\overline{4} 12]$ where the overbar represents a negative index
families of directions <uVW>

Drawing HCP Crystallographic Directions (i)

Algorithm (Miller-Bravais coordinates)

1. Remove brackets
2. Divide by largest integer so all values are ≤ 1
3. Multiply terms by appropriate unit cell dimension a (for a_{1}, a_{2}, and a_{3} axes) or c (for z-axis) to produce projections
4. Construct vector by placing tail at origin and stepping off these projections to locate the head

Drawing HCP Crystallographic Directions (ii)

- Draw the [$\overline{1} \overline{2} 13$] direction in a hexagonal unit cell.

[$\overline{1} \overline{2} 13$] direction represented by vector from point o to point s

Determination of HCP Crystallographic Directions (ii)

Algorithm

1. Determine coordinates of vector tail, pt. 1:
$x_{1}, y_{1}, \& z_{1}$; and vector head, pt. 2: $x_{2}, y_{2}, \& z_{2}$. in terms of three axis (a_{1}, a_{2}, and z)
2. Tail point coordinates subtracted from head point coordinates and normalized by unit cell dimensions a and c
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas, for three-axis coordinates [$u^{\prime} v^{\prime} w^{\prime}$]
5. Convert to four-axis Miller-Bravais lattice coordinates using equations below:

$$
\begin{array}{ll}
u=\frac{1}{3}\left(\begin{array}{ll}
2 u & v
\end{array}\right) & v=\frac{1}{3}\left(\begin{array}{ll}
2 v & u
\end{array}\right) \\
t=\left(\begin{array}{ll}
u+v) & w=w
\end{array}\right.
\end{array}
$$

6. Adjust to smallest integer values and enclose in brackets [uvtw]

Determination of HCP Crystallographic Directions (ii)

Determine indices for green vector

Example	a_{1}	a_{2}	z	
1.	Tail location	0	0	0
2.	Head location	a	a	$0 c$
2.	Normalized	1	1	0
3.	Reduction	1	1	0

4. Brackets
[110]
5. Convert to 4-axis parameters

$$
\begin{array}{ll}
u=\frac{1}{3}[(2)(1) \quad(1)]=\frac{1}{3} & v=\frac{1}{3}[(2)(1) \quad(1)]=\frac{1}{3} \\
t=\left(\frac{1}{3}+\frac{1}{3}\right)=\frac{2}{3} & w=0
\end{array}
$$

6. Reduction \& Brackets

$$
1 / 3,1 / 3,-2 / 3,0 \quad \Rightarrow \quad 1,1,-2,0 \quad \Rightarrow \quad[11 \overline{2} 0]
$$

Crystallographic Planes

(c)

Crystallographic Planes

- Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions \& common multiples. All parallel planes have same Miller indices.
- Algorithm

1. Read off intercepts of plane with axes in terms of a, b, c
2. Take reciprocals of intercepts
3. Reduce to smallest integer values
4. Enclose in parentheses, no commas i.e., (hkh)

Crystallographic Planes

example	a	b	c
1. Intercepts	1	1	∞
2. Reciprocals	1/1	1/1	1/0
	1	1	0
3. Reduction	1	1	0
4. Miller Indices	(110)		
example	a	b	c
1. Intercepts	1/2	∞	∞
2. Reciprocals	1/1/2	1/m	1/0
	2	0	0
3. Reduction	2	0	0
4. Miller Indices	(100)		

Crystallographic Planes

Family of Planes \{hk\}
$E x: \quad\{100\}=(100),(010),(001),(\overline{100}),(0 \overline{10}),(00 \overline{1})$

Crystallographic Planes (HCP)

- In hexagonal unit cells the same idea is used
example

1. Intercepts
2. Reciprocals
3. Reduction
4. Miller-Bravais Indices

Adapted from Fig. 3.8,
Callister \& Rethwisch $9 e$.

Crystallographic Planes

- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
a) Draw (100) and (111) crystallographic planes for Fe .
b) Calculate the planar density for each of these planes.

Summary

- Atoms may assemble into crystalline or amorphous structures.
- Crystallographic points, directions and planes are specified in terms of indexing schemes.
Crystallographic directions and planes are related to atomic linear densities and planar densities.
- Materials can be single crystals or polycrystalline. Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.

Chapter 4: The Structure of Crystalline Solids

ISSUES TO ADDRESS...

- What are common crystal structures for metals and ceramics?
- What features of a metal's/ceramic's atomic structure determine its density?
- How do the crystal structures of ceramic materials differ from those for metals?

Introduction To Materials Science, Chapter 3, The structure of crystalline solids

Metallic Crystal Structures

$>$ Metals are usually (poly)crystalline; although formation of amorphous metals is possible by rapid cooling
$>$ As we learned in Chapter 2, the atomic bonding in metals is non-directional \Rightarrow no restriction on numbers or positions of nearest-neighbor atoms \Rightarrow large number of nearest neighbors and dense atomic packing
$>$ Atom (hard sphere) radius, \mathbf{R}, defined by ion core radius - typically $0.1-0.2 \mathrm{~nm}$
$>$ The most common types of unit cells are the facedcentered cubic (FCC), the body-centered cubic (FCC) and the hexagonal close-packed (HCP).

Metallic Crystal Structures

- How can we stack metal atoms to minimize empty space?

2-dimensions

VS.

Now stack these 2-D layers to make 3-D structures

Metallic Crystal Structures

- Tend to be densely packed.
- Reasons for dense packing:
- Typically, only one element is present, so all atomic radii are the same.
- Metallic bonding is not directional.
- Nearest neighbor distances tend to be small in order to lower bond energy.
- Electron cloud shields cores from each other.
- Metals have the simplest crystal structures.

We will examine three such structures...

Simple Cubic Structure (SC)

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.
- Coordination \# = 6 (\# nearest neighbors)

Fig. 4.2, Callister \& Rethwisch 9e.

Atomic Packing Factor (APF)

APF Volume of atoms in unit cell*
 Volume of unit cell
 *assume hard spheres

- APF for a simple cubic structure $=0.52$

close-packed directions

contains $8 \times 1 / 8=$
1 atom/unit cell
Adapted from Fig. 4.2 (a),

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals.
--Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

- Coordination \# = 8

Adapted from Fig. 4.1, Callister \& Rethwisch $9 e$.

2 atoms/unit cell: 1 center +8 corners $\times 1 / 8$

Atomic Packing Factor: BCC

- APF for a body-centered cubic structure $=0.68$

Adapted from Fig. 4.1(a), Callister \& Rethwisch 9e.

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

- Coordination \# = 12

4 atoms/unit cell: 6 face $\times 1 / 2+8$ corners $\times 1 / 8$

Atomic Packing Factor: FCC

- APF for a face-centered cubic structure $=0.74$

maximum achievable APF
Close-packed directions:

$$
\text { length }=4 R=\sqrt{2} a
$$

Unit cell contains:
$6 \times 1 / 2+8 \times 1 / 8$
$=4$ atoms/unit cell

Fig. 3.1 (a),
Callister \&
Rethwisch 9 e.

FCC Stacking Sequence

- ABCABC... Stacking Sequence
- 2D Projection

A sites
B sites
C sites

- FCC Unit Cell

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection
- Coordination \# = 12
- $\mathrm{APF}=0.74$
- 2D Projection

6 atoms/unit cell ex: Cd, Mg, Ti, Zn

- $c / a=1.633$

Theoretical Density, ρ

$$
\text { Density }=\rho=\frac{\text { Mass of Atoms in Unit Cell }}{\text { Total Volume of Unit Cell }}
$$

$$
\rho=\frac{n A}{V_{C} N_{A}}
$$

where $\quad n=$ number of atoms/unit cell
$A=$ atomic weight
$V_{C}=$ Volume of unit cell $=a^{3}$ for cubic
$N_{\mathrm{A}}=$ Avogadro's number
$=6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

Theoretical Density, ρ

Linear Density

Number of atoms

- Linear Density of Atoms $\equiv \mathrm{LD}=\frac{\text { Unit length of direction vector }}{\text { Une }}$

Adapted from
Fig. 3.1(a),
Callister \&
Rethwisch 9 e.
ex: linear density of Al in [110] direction

$$
a=0.405 \mathrm{~nm}
$$

Planar Density of (100) Iron

Solution: At $\mathrm{T}<912^{\circ} \mathrm{C}$ iron has the BCC structure.

(100)

Fig. 4.2(c), Callister \& Rethwisch 9e [from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 51. Copyright © 1964 by John Wiley \& Sons, New York. Reprinted by permission of John Wiley \& Sons, Inc.]

Radius of iron $R=0.1241 \mathrm{~nm}$ atoms

2D repeat unit
Planar Density
$\frac{\text { area }}{2 \text { D repeat unit }}$

Planar Density of (111) Iron

Solution (cont): (111) plane 1 atom in plane/ unit surface cell

O atoms in plane
O atoms above plane
atoms below plane

$$
\text { area }=\sqrt{2} a h=\sqrt{3} a^{2}=\sqrt{3}\left(\frac{4 \sqrt{3}}{3} R\right)^{2}=\frac{16 \sqrt{3}}{3} R^{2}
$$

[^0]
Summary

- Common metallic crystal structures are FCC, BCC, and HCP. Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
-- maintaining charge neutrality
-- cation-anion radii ratios.
- Some materials can have more than one crystal structure.

This is referred to as polymorphism (or allotropy).

- X-ray diffraction is used for crystal structure and interplanar spacing determinations.

[^0]: $0.70 \times 10^{19} \frac{\text { atoms }}{\mathrm{m}^{2}}$

