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ISSUES TO ADDRESS... 

•  What is the difference in atomic arrangement  

   between crystalline and noncrystalline solids?  

•  How are crystallographic directions and planes  

   named? 

•  Under what circumstances does a material  

   property vary with the measurement direction? 

Chapter 3: Fundamentals of Crystallography  
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•  Non dense, random packing 

•  Dense, ordered packing 

Dense, ordered packed structures tend to have 

  lower energies. 

Energy and Packing 

Energy   

r 

typical neighbor    
 bond length     

typical neighbor    
 bond energy     

Energy   

r 

typical neighbor  
 bond length   

typical neighbor  
 bond energy   
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•  atoms pack in periodic, 3D arrays 
Crystalline materials... 

-metals 

-many ceramics 

-some polymers 

•  atoms have no periodic packing 

Noncrystalline materials... 

-complex structures 

-rapid cooling 

crystalline SiO2 

noncrystalline SiO2 "Amorphous" = Noncrystalline 
Adapted from Fig. 3.11(b), 

 Callister & Rethwisch 9e.  

Adapted from Fig. 3.11(a), 

 Callister & Rethwisch 9e.  

Materials and Packing 

Si Oxygen 

•  typical of: 

•  occurs for: 
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•  Single Crystals 

-Properties vary with 

  direction:  anisotropic. 

-Example:  the modulus 

  of elasticity (E) in BCC iron: 

Data from Table 3.3, 

Callister & Rethwisch 9e. 
(Source of data is R.W. 

Hertzberg, Deformation and 
Fracture Mechanics of 
Engineering Materials, 3rd ed., 

John Wiley and Sons, 1989.) 

•  Polycrystals 

-Properties may/may not 

  vary with direction. 

-If grains are randomly 

  oriented: isotropic. 

  (Epoly iron = 210 GPa) 

-If grains are textured, 

  anisotropic. 

200 μm Adapted from Fig. 

6.19(b), Callister & 
Rethwisch 9e. 
[Fig. 6.19(b) is courtesy of 

L.C. Smith and C. Brady, the 

National Bureau of 

Standards, Washington, DC 

(now the National Institute of 

Standards and Technology, 

Gaithersburg, MD).] 

Single vs Polycrystals 
E (diagonal) = 273 GPa 

E (edge) = 125 GPa 
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Crystal Systems 

  7  crystal systems 

 

14  crystal lattices 

Unit cell:  smallest repetitive volume which 

contains the complete lattice pattern of a crystal. 

a, b, and c are the lattice constants 



Chapter 3 - 6 

Polymorphism  

• Two or more distinct crystal structures for the same 

material (allotropy/polymorphism) 

  

         titanium 

            α, β -Ti  

 

         carbon 

 diamond, graphite  

BCC 

FCC 

BCC 

1538°
C 

1394°
C 

 912°C 

δ -Fe 

γ -Fe 

α -Fe 

liquid 

iron system 
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Point Coordinates 

Point coordinates for unit cell 
center are  

  

a/2, b/2, c/2       ½ ½ ½  
 

   

Point coordinates for unit cell 
corner are 111 

 

 

Translation: integer multiple of 
lattice constants   identical 
position in another unit cell  

z 

x 

y 
a b 

c 

000 

111 

y 

z 

·

2c 

·

·

·

b 

b 



Chapter 3 - 10 

Crystallographic Directions 

1. Determine coordinates of vector tail, pt. 1: 

x1, y1, & z1; and vector head, pt. 2: x2, y2, & z2. 

2. Tail point coordinates subtracted from head 

point coordinates. 

3. Normalize coordinate differences in terms 

of lattice parameters a, b, and c: 
 

 
 

4. Adjust to smallest integer values 

5. Enclose in square brackets, no commas 
  

 [uvw] 
ex:   

pt. 1   x1 = 0, y1 = 0, z1 = 0 

=>   1, 0, 1/2 

=>  [ 201 ] 

z 

x 

Algorithm 

y 

=>   2, 0, 1 

pt. 2 

head 
pt. 1: 

tail 

pt. 2   x2 = a, y2 = 0, z2 = c/2 
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Crystallographic Directions 

-4, 1, 2 

families of directions <uvw> 

z 

x 

where the overbar represents a 

negative index 

[ 412 ] => 

y 

Example 2:   

pt. 1   x1 =  a,   y1 = b/2,  z1 = 0 

pt. 2   x2 = -a,   y2 = b,     z2 = c 

=>   -2, 1/2, 1 

pt. 2 

head 

pt. 1: 

tail 

Multiplying by 2 to eliminate the fraction 
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Drawing HCP Crystallographic Directions (i) 

1. Remove brackets  

2. Divide by largest integer so all values  

     are ≤ 1 

3. Multiply terms by appropriate unit cell  

     dimension a (for a1, a2, and a3 axes)  

     or c (for z-axis) to produce  

     projections  

4. Construct vector by placing tail at   

     origin and stepping off these       

     projections to locate the head 

Algorithm (Miller-Bravais coordinates) 
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Drawing HCP Crystallographic Directions (ii)  

• Draw the              direction in a hexagonal unit cell.  

[1213] 

4.  Construct Vector 

1.  Remove brackets -1      -2       1       3 

Algorithm  a1      a2      a3      z 

2.  Divide by 3 
  

   

-
1

3
   -

2

3
     

1

3
     1

3.  Projections 

proceed –a/3 units along a1 axis to point p   

–2a/3 units parallel to a2 axis to point q   

a/3 units parallel to a3 axis to point r   

c units parallel to z axis to point s   

    

  

[1 2 13]

p 

q r 

s 

start at point o 

[1213] direction represented by vector from point o to point s 
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1. Determine coordinates of vector tail, pt. 1:  

x1, y1, & z1; and vector head, pt. 2: x2, y2, & z2. 

in terms of three axis (a1, a2, and z)  
2. Tail point coordinates subtracted from head 

point coordinates and normalized by unit cell 

dimensions a and c 

3. Adjust to smallest integer values 

4. Enclose in square brackets, no commas,  

     for three-axis coordinates      

5. Convert to four-axis Miller-Bravais lattice  

     coordinates using equations below: 

 

 

 

 

6. Adjust to smallest integer values and  

     enclose in brackets [uvtw]  

Algorithm 

    

   

u =
1

3
(2 ¢ u - ¢ v )

    

   

v =
1

3
(2 ¢ v - ¢ u )

    

  

t = -(u +v)   

  

w = ¢ w 

Determination of HCP Crystallographic Directions (ii) 
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4.     Brackets                       [110] 

1.     Tail location         0          0        0 

        Head location a          a        0c 

1          1         0 
3.     Reduction 1          1         0 

Example a1        a2        z 

5.     Convert to 4-axis parameters                        

    

   

u =
1

3
[(2)(1) - (1)] =

1

3

    

   

t = -(
1

3
+

1

3
) = -

2

3
    

  

w = 0

    

   

v =
1

3
[(2)(1) - (1)] =

1

3

1/3, 1/3, -2/3, 0     =>     1, 1, -2, 0    =>   [ 1120 ] 

6.     Reduction & Brackets   

Determination of HCP Crystallographic Directions (ii) 

Determine indices for green vector 

2.     Normalized 
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Crystallographic Planes 

Adapted from Fig. 3.7, Callister 
& Rethwisch 9e. 
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Crystallographic Planes 

• Miller Indices:  Reciprocals of the (three) axial 
intercepts for a plane, cleared of fractions & 
common multiples.  All parallel planes have 
same Miller indices. 
 

• Algorithm  
1.  Read off intercepts of plane with axes in   
     terms of a, b, c 
2. Take reciprocals of intercepts 
3. Reduce to smallest integer values 
4. Enclose in parentheses, no   
     commas i.e., (hkl)  
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Crystallographic Planes 
z 

x 

y 
a b 

c 

4.     Miller Indices      (110) 

example a         b        c 
z 

x 

y 
a b 

c 

4.     Miller Indices      (100) 

1.     Intercepts 1         1         

2.     Reciprocals 1/1      1/1     1/ 

1         1        0 
3.     Reduction 1         1        0 

1.     Intercepts 1/2               

2.     Reciprocals 1/½     1/    1/ 

2        0         0 
3.     Reduction 2        0         0 

example a         b        c 
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Crystallographic Planes 

z 

x 

y 
a b 

c 
·

·
·

4.     Miller Indices      (634) 

example 
1.     Intercepts 1/2        1       3/4 

a         b        c 

2.     Reciprocals 1/½     1/1     1/¾ 

2 1       4/3 

3.     Reduction 6 3        4 

(001) (010), 

Family of Planes   {hkl} 

(100), (010), (001), Ex:   {100} = (100), 
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Crystallographic Planes (HCP) 

• In hexagonal unit cells the same idea is used  

example a1        a2       a3        c 

4.     Miller-Bravais Indices (1011) 

1.     Intercepts 1         -1 1 
2.     Reciprocals 1      1/ 

1        0  

-1 

-1 

1 

1 

3.     Reduction 1        0 -1 1 

a2 

a3 

a1 

z 

Adapted from Fig. 3.8, 

Callister & Rethwisch 9e. 
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Crystallographic Planes 

• We want to examine the atomic packing of 

crystallographic planes 

• Iron foil can be used as a catalyst. The 

atomic packing of the exposed planes is 

important.  

a) Draw (100) and (111) crystallographic planes  

 for Fe. 

b)  Calculate the planar density for each of these 

planes. 

 



Chapter 3 - 

•  Crystallographic points, directions and planes are  

     specified in terms of indexing schemes.  

     Crystallographic directions and planes are related  

     to atomic linear densities and planar densities.  

22 

Summary 

•  Atoms may assemble into crystalline or  

     amorphous structures.  

•  Materials can be single crystals or polycrystalline.  

     Material properties generally vary with single crystal  

     orientation (i.e., they are anisotropic), but are generally  

     non-directional (i.e., they are isotropic) in polycrystals  

     with randomly oriented grains. 



Chapter 4 - 23 

ISSUES TO ADDRESS... 

•  What are common crystal structures for  

   metals and ceramics?  

•  What features of a metal’s/ceramic’s atomic  

   structure determine its density? 

•  How do the crystal structures of ceramic  

   materials differ from those for metals? 

Chapter 4: The Structure of Crystalline Solids 



Chapter 4 -     قسم الهندسة الميكانيكية  

Mechanical Engineering Department, King Saud University, P.O. Box 800, 

Riyadh 11421, Saudi Arabia  



Chapter 4 - 25 

 Metallic Crystal Structures  

• How can we stack metal atoms to minimize 

empty space? 

    2-dimensions 

vs. 

Now stack these 2-D layers to make 3-D structures 
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•  Tend to be densely packed. 

•  Reasons for dense packing: 

- Typically, only one element is present, so all atomic 

  radii are the same. 

- Metallic bonding is not directional. 

- Nearest neighbor distances tend to be small in 

  order to lower bond energy. 

- Electron cloud shields cores from each other. 

•  Metals have the simplest crystal structures. 

We will examine three such structures... 

Metallic Crystal Structures 
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•  Rare due to low packing density (only Po has this structure) 

•  Close-packed directions are cube edges. 

•  Coordination # = 6 

   (# nearest neighbors) 

Simple Cubic Structure (SC) 

Fig. 4.2, Callister & Rethwisch 9e.  
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•  APF for a simple cubic structure = 0.52 

APF =  

a 3 

4 

3 
π (0.5a) 3 1 

atoms 

unit cell 
atom 

volume 

unit cell 

volume 

Atomic Packing Factor (APF) 

APF =  
Volume of atoms in unit cell* 

Volume of unit cell 

*assume hard spheres 

Adapted from Fig. 4.2 (a), 

 Callister & Rethwisch 9e.  

close-packed directions 

a 

R = 0.5a 

contains 8 x 1/8 =  
            1  atom/unit cell 
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•  Coordination # = 8 

Adapted from Fig. 4.1, 

 Callister & Rethwisch 9e.  

•  Atoms touch each other along cube diagonals. 
--Note:  All atoms are identical; the center atom is shaded 

   differently only for ease of viewing. 

Body Centered Cubic Structure (BCC) 

ex: Cr, W, Fe (), Tantalum, Molybdenum 

2 atoms/unit cell:  1 center + 8 corners x 1/8 
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Atomic Packing Factor:  BCC 

APF =  

4 

3 
π  (  3 a/4 ) 3 2 

atoms 

unit cell atom 

volume 

a 3 

unit cell 

volume 

length = 4R = 

Close-packed directions: 

3 a 

•  APF for a body-centered cubic structure = 0.68 

a 
R Adapted from  

Fig. 4.1(a), Callister & 
Rethwisch 9e. 

a 

a   2 

a   3 
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•  Coordination # = 12 

Adapted from Fig. 3.1, Callister & Rethwisch 9e.  

• Atoms touch each other along face diagonals. 
--Note:  All atoms are identical; the face-centered atoms are shaded 

   differently only for ease of viewing. 

Face Centered Cubic Structure (FCC) 

ex: Al, Cu, Au, Pb, Ni, Pt, Ag 

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8 
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•  APF for a face-centered cubic structure = 0.74 

Atomic Packing Factor:  FCC 

maximum achievable APF 

APF =  

4 

3 
π  (  2 a/4 ) 3 4 

atoms 

unit cell atom 

volume 

a 3 

unit cell 

volume 

Close-packed directions:  

length = 4R = 2 a  

Unit cell contains: 
     6 x 1/2 + 8 x 1/8   
  =  4 atoms/unit cell 

a 

2 a 

Adapted from 

Fig. 3.1(a), 

Callister & 
Rethwisch 9e.  
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A sites 

B B 

B 

B B 

B B 

C  sites 

C C 

C 
A 

B 

B  sites 

•  ABCABC... Stacking Sequence 

•  2D Projection 

•  FCC Unit Cell 

FCC Stacking Sequence 

B B 

B 

B B 

B B 

B  sites 
C C 

C 
A 

C C 

C 
A 

A 
B 

C 
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•  Coordination # = 12 

•  ABAB... Stacking Sequence 

•  APF = 0.74 

•  3D Projection •  2D Projection 

Adapted from Fig. 4.3(a), 

 Callister & Rethwisch 9e.  

Hexagonal Close-Packed Structure 

(HCP) 

6 atoms/unit cell  
  

ex: Cd, Mg, Ti, Zn 

• c/a = 1.633 

c 

a 

A sites 

B  sites 

A sites Bottom layer 

Middle layer 

Top  layer 
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Theoretical Density, r 

where        n = number of atoms/unit cell 

        A = atomic weight  

        VC = Volume of unit cell = a3 for cubic 

        NA = Avogadro’s number  

             = 6.022 x 1023 atoms/mol 

Density =  r  = 

VC NA 

n A 
r  = 

Cell   Unit   of    Volume Total 

Cell   Unit   in    Atoms of   Mass 
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• Ex: Cr (BCC)   

  A = 52.00 g/mol   

  R = 0.125 nm    

  n = 2 atoms/unit cell 

ρtheoretical
 

a = 4R/ 3 = 0.2887 nm 

ρactual 

a 
R 

r =  

a 3 

52.00 2 

atoms 

unit cell 
mol 

g 

unit cell 

volume atoms 

mol 

6.022 x 1023 

Theoretical Density, ρ 

= 7.18 g/cm3 

= 7.19 g/cm3 

Adapted from  

Fig. 4.1(a), Callister & 
Rethwisch 9e. 
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ex:  linear density of Al in [110]  

direction  

  a = 0.405 nm 

 

Linear Density 
 

• Linear Density of Atoms  LD =  
 

 
 

a 

[110] 

Adapted from 

Fig. 3.1(a), 

Callister & 
Rethwisch 9e.  

Unit length of direction vector 

Number of atoms  

# atoms 

length 

1 
3.5 nm 

a 2 

2 
LD - = = 
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Planar Density of (100) Iron 

Solution:   At T < 912°C iron has the BCC structure. 

(100) 

Radius of iron R = 0.1241 nm 

R 
3 

3 4 
a = 

2D repeat unit 

=  Planar Density =  
a 2 

1 

atoms 

2D repeat unit 

=  
nm2 

atoms 
12.1 

m2 

atoms 
= 1.2 x 1019  

1 

2 

R 
3 

3 4 
area 

2D repeat unit 

Fig. 4.2(c), Callister & Rethwisch 9e [from W. G. Moffatt, G. W. 

Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, 

Structure, p. 51. Copyright © 1964 by John Wiley & Sons, New York. 

Reprinted by permission of John Wiley & Sons, Inc.] 
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Planar Density of (111) Iron 
Solution (cont):  (111) plane 1 atom in plane/ unit surface cell 

atoms in plane 

atoms above plane 

atoms below plane 

a h 
2 

3 
= 

a   2 

1 

=  =  
nm2 

atoms 
7.0 

m2 

atoms 
0.70 x 1019 

3 2 R 
3 

16 
Planar Density =  

atoms 

2D repeat unit 

area 

2D repeat unit 

3 3 
3 

2 

2 

R 
3 

16 
R 

3 

4 
  

2 a 3 ah 2 area = = = = 
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Summary 

•  X-ray diffraction is used for crystal structure and  

     interplanar spacing determinations.  

•  We can predict the density of a material, provided we  

     know the atomic weight, atomic radius, and crystal  

     geometry (e.g., FCC, BCC, HCP). 

•  Common metallic crystal structures are FCC, BCC, and       

     HCP. Coordination number and atomic packing factor  

     are the same for both FCC and HCP crystal structures. 

•  Some materials can have more than one crystal structure.  

     This is referred to as polymorphism (or allotropy).  

•  Ceramic crystal structures are based on: 

     -- maintaining charge neutrality 

     -- cation-anion radii ratios. 

•  Interatomic bonding in ceramics is ionic and/or covalent. 


