
Chapter 1

Introduction to Information Security

Do not figure on opponents not attacking; worry about your own lack of preparation.

BOOK OF THE FIVE RINGS
Introduction

• Information security: a “well-informed sense of assurance that the information risks and controls are in balance.” — Jim Anderson, Inovant (2002)
• Security professionals must review the origins of this field to understand its impact on our understanding of information security today
The History of Information Security

- Computer security began immediately after the first mainframes were developed
 - Groups developing code-breaking computations during World War II created the first modern computers
 - Multiple levels of security were implemented
- Physical controls to limit access to sensitive military locations to authorized personnel
- Rudimentary in defending against physical theft, espionage, and sabotage
The 1970s and 80s

• ARPANET (Advanced Research Project Agency) grew in popularity as did its potential for misuse
• Fundamental problems with ARPANET security were identified
 – No safety procedures for dial-up connections to ARPANET
 – Nonexistent user identification and authorization to system
• Late 1970s: microprocessor expanded computing capabilities and security threats
The 1970s and 80s (cont’d.)

• Information security began with Rand Report R-609 (paper that started the study of computer security)
• Scope of computer security grew from physical security to include:
 – Safety of data
 – Limiting unauthorized access to data
 – Involvement of personnel from multiple levels of an organization
MULTICS

- Early focus of computer security research was a system called Multiplexed Information and Computing Service (MULTICS)
- First operating system created with security as its primary goal
- Mainframe, time-sharing OS developed in mid-1960s by General Electric (GE), Bell Labs, and Massachusetts Institute of Technology (MIT)
- Several MULTICS key players created UNIX
- Primary purpose of UNIX was text processing
The 1990s

- Networks of computers became more common; so too did the need to interconnect networks
- Internet became first manifestation of a global network of networks
- Initially based on de facto standards
- In early Internet deployments, security was treated as a low priority
2000 to Present

- The Internet brings millions of computer networks into communication with each other—many of them unsecured
- Ability to secure a computer’s data influenced by the security of every computer to which it is connected
- Growing threat of cyber attacks has increased the need for improved security
What is Security?

• “The quality or state of being secure—to be free from danger”

• A successful organization should have multiple layers of security in place:
 – Physical security
 – Personal security
 – Operations security
 – Communications security
 – Network security
 – Information security
What is Security? (cont’d.)

• The protection of information and its critical elements, including systems and hardware that use, store, and transmit that information
• Necessary tools: policy, awareness, training, education, technology
• C.I.A. triangle
 – Was standard based on confidentiality, integrity, and availability
 – Now expanded into list of critical characteristics of information
Figure 1-3 Components of Information Security
Key Information Security Concepts

- Access
- Asset
- Attack
- Control, Safeguard, or Countermeasure
- Exploit
- Exposure
- Loss

- Protection Profile or Security Posture
- Risk
- Subjects and Objects
- Threat
- Threat Agent
- Vulnerability
Figure 1-4 Information security components analogy
© Cengage Learning 2012
Figure 1-4 Information Security Terms

Threat: Theft
Threat agent: Ima Hacker

Exploit: Script from MadHackz Web site

Attack: Ima Hacker downloads exploit from MadHackz web site, then accesses buybay's Web site and applies script, resulting in loss: download of customer data

Asset: buybay's customer database
Critical Characteristics of Information

• The value of information comes from the characteristics it possesses:
 – Availability
 – Accuracy
 – Authenticity
 – Confidentiality
 – Integrity
 – nonrepudation
Figure 1-6 The McCumber Cube
Components of an Information System

- Information system (IS) is entire set of components necessary to use information as a resource in the organization
 - Software
 - Hardware
 - Data
 - People
 - Procedures
 - Networks
Balancing Information Security and Access

• Impossible to obtain perfect security—it is a process, not an absolute
• Security should be considered balance between protection and availability
• To achieve balance, level of security must allow reasonable access, yet protect against threats
Figure 1-8 Balancing Information Security and Access
Approaches to Information Security Implementation: Bottom-Up Approach

• Grassroots effort: systems administrators attempt to improve security of their systems
• Key advantage: technical expertise of individual administrators
• Seldom works, as it lacks a number of critical features:
 – Participant support
 – Organizational staying power
Approaches to Information Security Implementation: Top-Down Approach

• Initiated by upper management
 – Issue policy, procedures, and processes
 – Dictate goals and expected outcomes of project
 – Determine accountability for each required action

• The most successful also involve formal development strategy referred to as systems development life cycle
Figure 1-9 Approaches to Information Security Implementation
Figure 1-10 SDLC Waterfall Methodology
The Security Systems Development Life Cycle

• The same phases used in traditional SDLC may be adapted to support specialized implementation of an IS project
• Identification of specific threats and creating controls to counter them
• SecSDLC is a coherent program rather than a series of random, seemingly unconnected actions
Investigation

• Identifies process, outcomes, goals, and constraints of the project
• Begins with Enterprise Information Security Policy (EISP)
• Organizational feasibility analysis is performed
Analysis

- Documents from investigation phase are studied
- Analysis of existing security policies or programs, along with documented current threats and associated controls
- Includes analysis of relevant legal issues that could impact design of the security solution
- Risk management task begins
Logical Design

• Creates and develops blueprints for information security
• Incident response actions planned:
 – Continuity planning
 – Incident response
 – Disaster recovery
• Feasibility analysis to determine whether project should be continued or outsourced
Physical Design

• Needed security technology is evaluated, alternatives are generated, and final design is selected
• At end of phase, feasibility study determines readiness of organization for project
Implementation

- Security solutions are acquired, tested, implemented, and tested again
- Personnel issues evaluated; specific training and education programs conducted
- Entire tested package is presented to management for final approval
Maintenance and Change

• Perhaps the most important phase, given the ever-changing threat environment
• Often, repairing damage and restoring information is a constant duel with an unseen adversary
• Information security profile of an organization requires constant adaptation as new threats emerge and old threats evolve
Information Security Project Team

• A number of individuals who are experienced in one or more facets of required technical and nontechnical areas:
 – Champion
 – Team leader
 – Security policy developers
 – Risk assessment specialists
 – Security professionals
 – Systems administrators
 – End users
Data Responsibilities

- Data owner: responsible for the security and use of a particular set of information
- Data custodian: responsible for storage, maintenance, and protection of information
- Data users: end users who work with information to perform their daily jobs supporting the mission of the organization