Communications in Statistics - Simulation and Computation

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lssp20

One- and Two-Sample Bayesian Prediction Intervals Based on Type-I Hybrid Censored Data

A. R. Shafay a & N. Balakrishnan b c

a Department of Mathematics, Fayoum University, Fayoum, Egypt
b Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
c Faculty of Science, King Saud University, Riyadh, Saudi Arabia

Published online: 15 Sep 2011.

To cite this article: A. R. Shafay & N. Balakrishnan (2012) One- and Two-Sample Bayesian Prediction Intervals Based on Type-I Hybrid Censored Data, Communications in Statistics - Simulation and Computation, 41:1, 65-88, DOI: 10.1080/03610918.2011.579367

To link to this article: http://dx.doi.org/10.1080/03610918.2011.579367

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
One- and Two-Sample Bayesian Prediction Intervals
Based on Type-I Hybrid Censored Data

A. R. SHAFAY¹ AND N. BALAKRISHNAN²,³

¹Department of Mathematics, Fayoum University, Fayoum, Egypt
²Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
³Faculty of Science, King Saud University, Riyadh, Saudi Arabia

In this article, we consider a general form for the underlying distribution and a general conjugate prior, and describe a general procedure for determining the Bayesian prediction intervals for future lifetimes based on an observed Type-I hybrid censored data. For the illustration of the developed results, the Exponential(θ) and Pareto(α, β) distributions are used as examples. One-sample Bayesian predictive survival function cannot be obtained in closed-form and so Gibbs sampling procedure is used to draw Markov Chain Monte Carlo (MCMC) samples, which are then used to compute the approximate predictive survival function. Finally, some numerical results are presented to illustrate all the inferential results developed here.

Keywords Bayesian prediction; Exponential distribution; Markov Chain Monte Carlo; Order statistics; Pareto distribution; Type-I hybrid censored sample.

Mathematics Subject Classification Primary 62G30; Secondary 62F15.

1. Introduction

In reliability analysis, experiments often terminate before all units on test have failed due to cost and time considerations. In such cases, failure information is available only on part of the sample, and on all units that had not failed, only partial information will be available. Such data are said to be censored. The two most common censoring schemes are Type-I and Type-II censoring schemes. They can be described as follows. Consider n identical units on a life-testing experiment. In the Type-I censoring scheme, the experiment is terminated when a pre-fixed censoring time Ti is reached. On the other hand, in the Type-II censoring scheme, the experiment gets terminated when a pre-specified number r ≤ n of failures is observed. Under both censoring schemes, some information is lost since only a part of the sample is observed, but they do result in a saving in terms of time and cost. In the Type-I censoring scheme, the duration of the test is guaranteed but
the level of efficiency may be too low or too high due to the uncertainty in the number of complete failures. In the Type-II censoring scheme, the level of efficiency is guaranteed (since the number of failures to be observed is fixed in advance), but the duration of the experiment may end up being too long since the exact time of the r-th failure is random. For these reasons, another censoring scheme becomes necessary if both efficiency level and guaranteed duration are sought.

A mixture of Type-I and Type-II censoring schemes, known as hybrid censoring scheme, has been discussed in the literature for this purpose. In the Type-I hybrid censoring scheme, the experiment is terminated as soon as a pre-specified number r out of n items has failed or a pre-fixed time T on test has been reached. In contrast, in the Type-II hybrid censoring scheme, the life-testing experiment gets terminated whenever the later of the two stopping rules is reached; see Childs et al. (2003). Type-I hybrid censoring has been discussed extensively in the reliability literature; see, for example, Epstein (1954), MIL-STD-781 C (1977), Chen and Bhattacharyya (1988), Gupta and Kundu (1998), Kundu (2007), Park et al. (2008), and Park and Balakrishnan (2009).

Let $X_{1,n} < X_{2,n} < \cdots < X_{r,n}$ be the order statistics (OS) from a random sample of size n from an absolutely continuous distribution function $F(x) \equiv F(x | \theta)$ with density function $f(x) \equiv f(x | \theta)$, where the parameter $\theta \in \Theta$ may be a real vector. Let K denote the number of $X_{i,n}$'s that are at most T. Then, K is a discrete random variable with support $\{0, 1, \ldots, n\}$ and probability density function (pdf) as

$$P(K = k) = \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, \ldots, n,$$

where $p = F(T)$ and $q = 1 - p = 1 - F(T)$.

Therefore, under the Type-I hybrid censoring scheme described above, we have one of the two following types of observations:

Case I. $X_{1,n} < \cdots < X_{r,n}$ if $X_{r,n} \leq T$ with $r \leq K \leq n$;

Case II. $X_{1,n} < \cdots < X_{K,n}$ if $T < X_{r,n}$ with $0 \leq K < r - 1$.

Thus, the likelihood function of such a Type-I hybrid censored sample is as follows:

Case I.

$$L_1(\theta; \mathbf{x}_r) = \frac{n!}{(n-r)!} \prod_{i=1}^{r} f(x_i)[1 - F(x_i)]^{n-r},$$

where $\mathbf{x}_r = (x_1, \ldots, x_r)$ and $x_1 < \cdots < x_r \leq T$;

Case II.

$$L_2(\theta; \mathbf{x}_K) = \frac{n!}{(n-K)!} \prod_{i=1}^{K} f(x_i)[1 - F(T)]^{n-K},$$

where $\mathbf{x}_K = (x_1, \ldots, x_K)$ and $x_1 < \cdots < x_K \leq T < x_{K+1}$.
Bayesian Prediction Based on Hybrid Censored Data

We will use the following Lemma to develop the main results presented in the following sections.

Lemma 1.1.

1. Conditional on \(K = k \), the vectors \((X_{1:n}, \ldots, X_{k:n})\) and \((X_{k+1:n}, \ldots, X_{n:n})\) are mutually independent with

\[
(X_{1:n}, \ldots, X_{k:n}) \overset{d}{=} (V_{1:k}, \ldots, V_{k:k}),
\]

\[
(X_{k+1:n}, \ldots, X_{n:n}) \overset{d}{=} (W_{n-k-1}, \ldots, W_{n-n-k-1}),
\]

where \(V_{1:k}, \ldots, V_{k:k}\) are OS from an iid sample of size \(k \) from \(F(x) \) right-truncated at \(T \), and \(W_{n-k-1}, \ldots, W_{n-n-k-1} \) are OS from an iid sample of size \(n - k \) from \(F(x) \) left-truncated at \(T \);

2. Conditional on \(K = k \), the conditional pdf of \(X_{x:n} \), given \(X_{1:n} = x_1, \ldots, X_{k:n} = x_k \) \((X_{x:n} < X_{x:n} \leq T, r < s \leq n)\), is the same as the conditional pdf of \(X_{x:k} \), given \(X_{r:k} = x_r \), from a random sample of size \(k \) from \(F(x) \) right-truncated at \(T \);

3. Conditional on \(K = k \), the conditional pdf of \(X_{x:n} \), given \(X_{1:n} = x_1, \ldots, X_{k:n} = x_k \) \((X_{x:n} \leq T < X_{x:n}, r < s \leq n)\), is the same as the marginal pdf of the \((s-k)\)-th order statistic from a random sample of size \(n - k \) from \(F(x) \) left-truncated at \(T \);

4. Conditional on \(K = k \), the conditional pdf of \(X_{x:n} \), given \(X_{1:n} = x_1, \ldots, X_{k:n} = x_k \) \((X_{x:n} > T, k + 1 \leq s \leq n)\), is the same as the marginal pdf of the \((s-k)\)-th order statistic from a random sample of size \(n - k \) from \(F(x) \) left-truncated at \(T \).

For a proof of this result as well as some generalizations of this result, one may refer to Iliopoulos and Balakrishnan (2009).

When \(r < s \leq n \), by using the above Lemma, the conditional density function of \(X_{x:n} \), given the Type-I hybrid censored data, is obtained readily as follows:

Case I.

\[f_1(x_r | x_s) = \begin{cases} f_{11}(x_r | x_s), & x_r < x_s \leq T, \\ f_{12}(x_r | x_s), & x_r > T, \end{cases} \tag{1.3} \]

where

\[
f_{11}(x_r | x_s) = \frac{1}{P(r \leq K \leq n)} \sum_{k=s}^{n} f(x_r | x_s, K = k)P(K = k)
\]

\[
= \sum_{k=s}^{n} \frac{(k-r)!\phi_k(T)}{(s-r-1)!(k-s)!} \frac{[F(x_s) - F(x_r)]^{r-s-1}[F(T) - F(x_s)]^{k-s}f(x_s)}{[F(T) - F(x_s)]^{k-r}}, \quad x_r < x_s \leq T,
\]

and

\[
f_{12}(x_r | x_s) = \frac{1}{P(r \leq K \leq n)} \sum_{k=r}^{n-1} f(x_r | x_s, K = k)P(K = k)
\]

\[
= \sum_{k=r}^{n-1} \frac{(n-k)!\phi_k(T)}{(s-k-1)!(n-s)!} \frac{[F(x_s) - F(T)]^{r-k-1}[1 - F(x_s)]^{n-k}f(x_s)}{[1 - F(T)]^{n-k}}, \quad x_r > T,
\]
Shafay and Balakrishnan

with

$$
\phi_s(T) = \frac{P(K = k)}{\sum_{j=0}^{s} P(K = j)};
$$

Case II.

$$
f_2(x | x_k) = \frac{1}{P(0 \leq K \leq r-1)} \sum_{k=0}^{r-1} f(x_s | x_k, K = k) P(K = k) = \sum_{k=0}^{r-1} \frac{(n-k)! \psi_s(T)}{(s-k-1)!(n-s)!} \frac{[F(x_s) - F(T)]}{[1 - F(T)]^{n-k}}^{s-k} [1 - F(x_s)]^{a+s-k}, \quad x_s > T,
$$

where

$$
\psi_s(T) = \frac{P(K = k)}{\sum_{j=0}^{r-1} P(K = j)}.
$$

Prediction of future events on the basis of the past and present knowledge is a fundamental problem of statistics, arising in many contexts in a natural way. As in the case of estimation, a predictor can be either a point or an interval predictor. Several researchers have considered Bayesian prediction for future observations based on Type-I censored data; see AL-Hussaini (1999a) and AL-Hussaini et al. (2001). Bayesian prediction bounds for future observations based on Type-II censored data have been discussed by several authors, including Dunsmore (1974), Nigm and Hamdy (1987), Nigm (1988, 1989), AL-Hussaini and Jaheen (1995), AL-Hussaini (1999b), and Raqab and Madi (2005). Draper and Guttman (1987) discussed the two-sample Bayesian prediction of the future lifetime of an item based on a Type-I hybrid censored data from an exponential distribution. Ebrahimi (1992) developed the classical prediction intervals for future failures in the case of exponential distribution under Type-I hybrid censoring. Recently, Balakrishnan and Shafay (2011) considered a general form for the underlying distribution and a general conjugate prior and developed a general procedure for determining the one- and two-sample Bayesian prediction intervals for future lifetimes based on a Type-II hybrid censored data. In this paper, we discuss the same problem based on a Type-I hybrid censored data which involves some additional complications.

The rest of this article is organized as follows. In Sec. 2, we present the structure of the prior and posterior distributions. In Sec. 3, we derive the one-sample Bayesian predictive survival function and the one-sample Bayesian prediction bounds for the s-th ($r < s \leq n$) ordered lifetime from Type-I hybrid censored sample. Next, we derive the two-sample Bayesian predictive survival function and the two-sample Bayesian prediction bounds for the s-th ordered lifetime from a future independent sample when the (observed) informative sample is a Type-I hybrid censored and the (unobserved) future sample is a complete sample from the same parent distribution. In Sec. 4, we present the results for the Exponential(θ) and Pareto(x, β) distributions as illustrative examples, wherein we adopt the Markov Chain Monte Carlo method to compute the approximate predictive survival function in the one-sample case. Finally, in Sec. 5, we present some numerical results for illustrating all the inferential methods developed here.
2. Prior and Posterior Distributions

Since the survival function (SF) \(\overline{F}(x | \theta) = 1 - F(x | \theta) \) corresponding to any cumulative distribution function (CDF) \(F(x | \theta) \), \(\theta \in \Theta \), can be written in the form
\[
\overline{F}(x | \theta) = \exp[-\lambda(x; \theta)], \tag{2.1}
\]
where \(\lambda(x; \theta) = -\ln \overline{F}(x | \theta) \), we shall consider the underlying population SF to be given by (2.1). Of course, some conditions need to be imposed so that \(\overline{F}(x | \theta) \) is a valid SF. These conditions are: \(\lambda(x; \theta) \) is continuous, monotone increasing and differentiable function, with \(\lambda(x; \theta) \to 0 \) as \(x \to -\infty \) and \(\lambda(x; \theta) \to \infty \) as \(x \to \infty \).

The probability density function (pdf) corresponding to (2.1) is given by
\[
f(x | \theta) = \lambda'(x; \theta) \exp[-\lambda(x; \theta)], \tag{2.2}
\]
where \(\lambda'(x; \theta) \) is the derivative of \(\lambda(x; \theta) \) with respect to \(x \).

With an appropriate choice of \(\lambda(x; \theta) \) (notice that the derivative of \(\lambda(x; \theta) \) with respect to \(x \) is the hazard rate function), several distributions that are used in reliability studies can be obtained as special cases. For example, if \(\lambda(x; \theta) = \theta x \), we obtain the Exponential(\(\theta \)) distribution. If \(\lambda(x; \theta) = -2 \ln(\beta/x) \), we obtain the Pareto(\(\beta_\lambda \)) distribution. If \(\lambda(x; \theta) = \beta x^\theta \), we obtain the Weibull(\(x_\beta \)) distribution. The Burr Type XII(\(x, \beta \)) distribution is obtained by taking \(\lambda(x; \theta) = x \ln(1 + x^\theta) \).

Appropriate conditions need to be imposed on \(\lambda(x; \theta) \) to suit the domain on which \(\overline{F}(x | \theta) \) in (2.1) is defined. For example, if \(\overline{F}(x | \theta) \) is defined only on the positive half of the real line (as for the Exponential, Weibull and Burr Type XII distributions), then \(\lambda(x; \theta) \to 0 \) as \(x \to 0^+ \) and \(\lambda(x; \theta) \to \infty \) as \(x \to \infty \). If \(\overline{F}(x | \theta) \) is defined on \((-\infty, \infty) \) (as in the Pareto distribution), then \(\lambda(x; \theta) \to 0 \) as \(x \to \beta^+ \) and \(\lambda(x; \theta) \to \infty \) as \(x \to \infty \). The exponential form of the SF in (2.1) provides some flexibility in developing general results, as carried out in the following sections.

Upon using (2.1) and (2.2) in (1.1) and (1.2), we obtain the likelihood function as follows:

Case I.
\[
L_1(\theta; x) = \frac{n!}{(n-r)!} \left(\prod_{i=1}^{r} \lambda(x_i; \theta) \right) \exp \left[-\sum_{i=1}^{r} \lambda(x_i; \theta) - (n-r)\lambda(x_r; \theta) \right] \tag{2.3}
\]

Case II.
\[
L_2(\theta; x) = \frac{n!}{(n-K)!} \left(\prod_{i=1}^{K} \lambda(x_i; \theta) \right) \exp \left[-\sum_{i=1}^{K} \lambda(x_i; \theta) - (n-K)\lambda(T; \theta) \right] \tag{2.4}
\]

From the Bayesian viewpoint, the unknown parameter is regarded as a realization of a random variable, which has some prior distribution. We consider here a general conjugate prior, suggested by AL-Hussaini (1999b), that is given by
\[
\pi(\theta; \delta) \propto C(\theta; \delta) \exp[-D(\theta; \delta)], \tag{2.5}
\]
where \(\theta \in \Theta \) is the vector of parameters of the distribution in (2.1) and \(\delta \) is the vector of prior parameters. The prior family in (2.5) includes several priors used in the literature as special cases.
Then, from (2.3), (2.4), and (2.5), the posterior density function of θ, given the Type-I hybrid censored data, is readily obtained as follows:

Case I.

$$\pi^*_1(\theta | x_r) = I_1^{-1} \eta_1(\theta; x_r) \exp[-\zeta_1(\theta; x_r)],$$ \hspace{1cm} (2.6)

where

$$\eta_1(\theta; x_r) = C(\theta; \delta) \prod_{i=1}^{r} \lambda'(x_i; \theta), \quad \zeta_1(\theta; x_r) = \sum_{i=1}^{r} \lambda(x_i; \theta) + (n - r) \lambda(T; \theta) + D(\theta; \delta)$$

and

$$I_1 = \int_{\theta \in \Theta} \eta_1(\theta; x_r) \exp[-\zeta_1(\theta; x_r)] d\theta;$$

Case II.

$$\pi^*_2(\theta | x_K) = I_2^{-1} \eta_2(\theta; x_K) \exp[-\zeta_2(\theta; x_K)],$$ \hspace{1cm} (2.7)

where

$$\eta_2(\theta; x_K) = C(\theta; \delta) \prod_{i=1}^{K} \lambda'(x_i; \theta), \quad \zeta_2(\theta; x_K) = \sum_{i=1}^{K} \lambda(x_i; \theta) + (n - K) \lambda(T; \theta) + D(\theta; \delta)$$

and

$$I_2 = \int_{\theta \in \Theta} \eta_2(\theta; x_K) \exp[-\zeta_2(\theta; x_K)] d\theta.$$

3. **Bayesian Prediction Intervals**

3.1. **One-Sample Bayesian Prediction**

Upon substituting (2.1) and (2.2) in (1.3) and (1.4), we obtain the conditional density function of $X_{i,n}$, given the Type-I hybrid censored data, as follows:

Case I.

$$f_1(x_r | x_r) = \begin{cases} f_{11}(x_r | x_r), & x_r < x_r \leq T, \\ f_{12}(x_r | x_r), & x_r > T, \end{cases}$$ \hspace{1cm} (3.1)

where

$$f_{11}(x_r | x_r) = \sum_{k=r}^{n-k-s-r-1} \sum_{w=0}^{k} \phi_k(T; \theta) \lambda'(x_r; \theta) h_{k,w,q}(x_r, x_r, T; \theta), \quad x_r < x_r \leq T,$$

and

$$f_{12}(x_r | x_r) = \sum_{k=r}^{n-k-s-r-1} \sum_{w=0}^{k} \phi_k(T; \theta) \lambda'(x_r; \theta) g_{k,w}(x_r, T; \theta), \quad x_r > T.$$
with \(C_1 = \frac{(-1)^{s+1}(k-1)}{(s-k-r)(q-1)!} \), \(C_2 = \frac{(-1)^s(s-k-1)(q-1)!}{(s-k-r)(q-1)!}, \)

\[
\phi_k(T; \theta) = \frac{\binom{r}{k} \exp[-(n-k)\lambda(T; \theta)][1 - \exp[-\lambda(T; \theta)]^k}{\sum_{j=r}^n \binom{n}{j} \exp[-(n-j)\lambda(T; \theta)][1 - \exp[-\lambda(T; \theta)]^j},
\]

\[
h_{k, w, q}(x, y, z; \theta) = \frac{\exp[-(s - r - q - 1)\lambda(y; \theta) - w\lambda(z; \theta) - (k - s - w + q + 1)\lambda(x; \theta)]}{[\exp[-\lambda(y; \theta)] - \exp[-\lambda(z; \theta)]]^{s-r}},
\]

and

\[
g_w(x, y; \theta) = \exp[-(n - s + w + 1)\lambda(x; \theta) - \lambda(y; \theta)];
\]

Case II.

\[
f_2(x_s | x_k) = \sum_{k=0}^{r-1} \sum_{w=0}^{k-1} \sum_{q=0}^{s-1} C_2 \psi_k(T; \theta) \phi_w(x_s; \theta) h_{k, w, q}(x_s, x_r, T; \theta) \pi_1^s(\theta | x_s) d\theta, \quad x_s > T, \tag{3.2}
\]

where

\[
\psi_k(T, \theta) = \frac{\binom{r}{k} \exp[-(n-k)\lambda(T; \theta)][1 - \exp[-\lambda(T; \theta)]^k}{\sum_{j=r}^n \binom{n}{j} \exp[-(n-j)\lambda(T; \theta)][1 - \exp[-\lambda(T; \theta)]^j},
\]

From (2.6), (2.7), (3.1), and (3.2), we simply obtain the predictive density function of \(X_{x,s} \) as follows:

Case I.

\[
f_1^s(x_r | x_s) = \begin{cases}
 f_{11}(x_r | x_s), & x_r < x_s \leq T, \\
 f_{12}(x_r | x_s), & x_s > T,
\end{cases} \tag{3.3}
\]

where

\[
f_{11}(x_r | x_s) = \sum_{k=0}^{r} \sum_{w=0}^{k-1} \sum_{q=0}^{s-1} C_1 \int_{\theta \in \Theta} \phi_k(T; \theta) h_{k, w, q}(x_s, x_r, T; \theta) \pi_1^s(\theta | x_s) d\theta, \quad x_r < x_s \leq T,
\]

and

\[
f_{12}(x_r | x_s) = \sum_{k=0}^{r} \sum_{w=0}^{k-1} \sum_{q=0}^{s-1} C_2 \int_{\theta \in \Theta} \phi_k(T; \theta) g_w(x_s, x_r; \theta) \pi_1^s(\theta | x_s) d\theta, \quad x_s > T;
\]

Case II.

\[
f_2^s(x_s | x_k) = \sum_{k=0}^{r} \sum_{w=0}^{k-1} \sum_{q=0}^{s-1} C_2 \int_{\theta \in \Theta} \phi_k(T; \theta) \psi_k(T, \theta) h_{k, w, q}(x_s, x_r, T; \theta) \pi_1^s(\theta | x_k) d\theta, \quad x_s > T. \tag{3.4}
\]
From (3.3) and (3.4), we simply obtain the predictive survival function of $X_{s:n}$ as follows:

Case I.

\[
\overline{F}_1^*(t \mid x_r) = \begin{cases}
\overline{F}_{11}^*(t \mid x_r), & x_r < t \leq T, \\
\overline{F}_{12}^*(t \mid x_r), & t > T,
\end{cases}
\]

(3.5)

where

\[
\overline{F}_{11}^*(t \mid x_r) = \int_t^T f_{11}(x_s \mid x_r) dx_s + \int_T^\infty f_{12}(x_s \mid x_r) dx_s = \\
\sum_{k=r}^n \sum_{w=0}^{s-r-1} C_1 \int_{\theta} \phi_k(T; \theta) h_{k,w,q}(t, x_r, T; \theta) \, d\theta \\
- \sum_{r-1}^{s-1} \sum_{w=0}^{s-r-1} C_2 \int_{\theta} \phi_k(T; \theta) \pi_1^*(\theta \mid x_r) \, d\theta,
\]

and

\[
\overline{F}_{12}^*(t \mid x_r) = \int_t^\infty f_{12}^*(x_s \mid x_r) dx_s = \\
\sum_{k=r}^n \sum_{w=0}^{s-r-1} C_2 \int_{\theta} \phi_k(T; \theta) g_{w}(t, T; \theta) \pi_1^*(\theta \mid x_r) \, d\theta;
\]

Case II.

\[
\overline{F}_2^*(t \mid x_k) = \int_t^\infty f_2^*(x_s \mid x_k) dx_s = \\
\sum_{k=0}^{s-r-1} \sum_{w=0}^{s-r-1} C_2 \int_{\theta} \phi_k(T; \theta) g_{w}(t, T; \theta) \pi_2^*(\theta \mid x_k) \, d\theta.
\]

(3.6)

Then, the Bayesian predictive bounds of a two-sided equi-tailed 100(1 - γ)% interval for $X_{s:n}$, $r < s \leq n$, can be obtained by solving the following two equations:

\[
\overline{F}^*(L_{X_{s:n}} \mid x) = 1 - \frac{\gamma}{2} \quad \text{and} \quad \overline{F}^*(U_{X_{s:n}} \mid x) = \frac{\gamma}{2},
\]

where

\[
\overline{F}^*(t \mid x) = \begin{cases}
\overline{F}_1^*(t \mid x_r), & \text{Case I}, \\
\overline{F}_2^*(t \mid x_k), & \text{Case II},
\end{cases}
\]

and $L_{X_{s:n}}$ and $U_{X_{s:n}}$ denote the lower and upper bounds, respectively.

3.2. **Two-Sample Bayesian Prediction**

Let $Y_{1:m} \leq Y_{2:m} \leq \cdots \leq Y_{m:m}$ be the OS from a future random sample of size m from the same population. It is well known that the marginal density function of the s-th
order statistic from a sample of size \(m \) from a continuous distribution with cdf \(F(x) \) and pdf \(f(x) \) is given by

\[
f_{Y_{\infty} | \theta}(y | \theta) = \frac{m!}{(s-1)!(m-s)!}[F(y)]^{s-1}[1 - F(y)]^{m-s}f(y),
\]

where \(1 \leq s \leq m \); see Arnold et al. (1992).

Upon substituting (2.1) and (2.2) in (3.7), we obtain

\[
f_{Y_{\infty} | \theta}(y | \theta) = \sum_{w=0}^{s-1} C_3 \int_{\theta \in \Theta} \dot{x}(y; \theta) \exp[-(m-s+w+1)\lambda(y; \theta)] \pi_1^*(\theta | \mathbf{x}_w) d\theta;
\]

where \(1 \leq s \leq m \) and \(C_3 = \frac{(-1)^s (s-1)!}{m!(m-s)!} \).

From (2.6), (2.7) and (3.8), we simply obtain the Bayesian predictive density function of \(Y_{x,m} \) as follows:

Case I.

\[
f^*_{Y_{x,m} | \mathbf{x}_w}(y | \mathbf{x}_w) = \sum_{w=0}^{s-1} C_3 \int_{\theta \in \Theta} \dot{x}(y; \theta) \exp[-(m-s+w+1)\lambda(y; \theta)] \pi_1^*(\theta | \mathbf{x}_w) d\theta;
\]

Case II.

\[
f^*_{Y_{x,m} | \mathbf{x}_k}(y | \mathbf{x}_k) = \sum_{w=0}^{s-1} C_3 \int_{\theta \in \Theta} \dot{x}(y; \theta) \exp[-(m-s+w+1)\lambda(y; \theta)] \pi_2^*(\theta | \mathbf{x}_k) d\theta.
\]

From (3.9) and (3.10), we simply obtain the predictive survival function of \(Y_{x,m} \) as follows:

Case I.

\[
\overline{F}^*_{Y_{x,m} | \mathbf{x}_w}(t | \mathbf{x}_w) = \int_t^\infty f^*_{Y_{x,m} | \mathbf{x}_w}(y | \mathbf{x}_w) dy
\]

\[
= \sum_{w=0}^{s-1} \frac{C_3}{m-s+w+1} \int_{\theta \in \Theta} \exp[-(m-s+w+1)\lambda(t; \theta)] \pi_1^*(\theta | \mathbf{x}_w) d\theta;
\]

Case II.

\[
\overline{F}^*_{Y_{x,m} | \mathbf{x}_k}(t | \mathbf{x}_k) = \int_t^\infty f^*_{Y_{x,m} | \mathbf{x}_k}(y | \mathbf{x}_k) dy
\]

\[
= \sum_{w=0}^{s-1} \frac{C_3}{m-s+w+1} \int_{\theta \in \Theta} \exp[-(m-s+w+1)\lambda(t; \theta)] \pi_2^*(\theta | \mathbf{x}_k) d\theta.
\]

Consequently, the Bayesian predictive bounds of a two-sided equi-tailed 100(1 - \(\gamma \))% interval for \(Y_{x,m} \), \(1 \leq s \leq m \), can be obtained by solving the following two equations:

\[
\overline{F}^*_{Y_{x,m} | \mathbf{x}}(L_{Y_{x,m}} | \mathbf{x}) = 1 - \frac{\gamma}{2} \quad \text{and} \quad \overline{F}^*_{Y_{x,m} | \mathbf{x}}(U_{Y_{x,m}} | \mathbf{x}) = \frac{\gamma}{2},
\]
where

\[
\bar{F}_{Y_{\infty}}(t | x) = \begin{cases}
\bar{F}_{Y_{\infty}}(t | x_r), & \text{Case I,} \\
\bar{F}_{Z_{\infty}}(t | x_k), & \text{Case II,}
\end{cases}
\]

and \(L_{Y_{\infty}}\) and \(U_{Y_{\infty}}\) denote the lower and upper bounds, respectively.

4. Illustrative Examples

In this section, we discuss the Bayesian prediction problems for the Exponential(\(\theta\)) distribution when \(\theta\) is unknown, and the Pareto(\(x, \beta\)) distribution when both parameters \(x\) and \(\beta\) are unknown, as illustrative examples.

4.1. Exponential (\(\theta\)) Model

The distribution function in this case is

\[
F(x | \theta) = 1 - \exp[-\theta x], \quad x > 0,
\]

where \(\theta > 0\), and so we have

\[
\lambda(x; \theta) = \theta x \quad \text{and} \quad \lambda'(x; \theta) = \theta.
\]

For the case when \(\theta\) is unknown, we use the conjugate gamma prior for \(\theta\) with density

\[
\pi(\theta; \delta) = \frac{d^c}{\Gamma(c)} \theta^{c-1} \exp[-\theta d], \quad \theta > 0,
\]

where \(c\) and \(d\) are positive constants, and so we have

\[
C(\theta; \delta) = \theta^{c-1} \quad \text{and} \quad D(\theta; \delta) = \theta d,
\]

where \(\delta = (c, d)\).

Hence, the posterior density function is obtained as follows:

Case I.

\[
\pi_1^*(\theta | x_r) = \frac{\left(\sum_{i=1}^r x_i + (n - r)x_r + d\right)^{r+c}}{\Gamma(r + c)} \theta^{r+c-1} \exp\left[-\theta \left\{\sum_{i=1}^r x_i + (n - r)x_r + d\right\}\right];
\]

Case II.

\[
\pi_2^*(\theta | x_k) = \frac{\left(\sum_{i=1}^k x_i + (n - K)T + d\right)^{K+c}}{\Gamma(K + c)} \theta^{K+c-1}
\times \exp\left[-\theta \left\{\sum_{i=1}^k x_i + (n - K)T + d\right\}\right].
\]
4.1.1. One-Sample Bayesian Prediction. The predictive survival function of $X_{x,y}$ in this special case is obtained as follows:

Case I.

$$\overline{F}_1^*(t \mid x_r) = \begin{cases} F_{11}^*(t \mid x_r), & x_r < t \leq T, \\ F_{12}^*(t \mid x_r), & t > T, \end{cases}$$

where

$$\overline{F}_1^*(t \mid x_r) = \sum_{k=1}^{s-1} \sum_{s-r-1}^{n-k} \sum_{q=0}^{n-k-s-w+q+1} \frac{C_1}{k - s - w + q + 1} \times \int_0^\infty \phi_k(T; \theta)[h_{k,x,y}(t, x_r, T; \theta) - h_{k,x,y}(T, x_r, T; \theta)]\pi^*_1(\theta \mid x_r) d\theta$$

$$\phantom{\overline{F}_1^*(t \mid x_r)} + \sum_{k=r}^{s-1} \sum_{s-r-1}^{n-k} \int_0^\infty \phi_k(T; \theta)\pi^*_1(\theta \mid x_r) d\theta \quad (4.7)$$

and

$$\overline{F}_{12}^*(t \mid x_r) = \sum_{k=r}^{s-1} \sum_{s-r-1}^{n-k} \frac{C_2}{n - s + w + 1} \int_0^\infty \phi_k(T; \theta) g_w(t, T; \theta) \pi^*_1(\theta \mid x_r) d\theta, \quad (4.8)$$

with

$$\phi_k(T; \theta) = \frac{\binom{n}{k} \exp[-(n - k)\theta T][1 - \exp[-\theta T]^k}{\sum_{j=0}^n \binom{n}{j} \exp[-(n - j)\theta T][1 - \exp[-\theta T]^j].}$$

$$h_{k,x,y}(x, y, z; \theta) = \frac{\exp[-\theta((s - r - q - 1)x + wz + (k - s - w + q + 1)x)]}{[\exp[-\theta y] - \exp[-\theta z]]^{k-r}}$$

and

$$g_w(t, T; \theta) = \exp[-\theta((n - s + w + 1)(t - T))];$$

Case II.

$$\overline{F}_2^*(t \mid x_K) = \sum_{k=0}^{r-1} \sum_{s-r-1}^{n-k} \frac{C_2}{n - s + w + 1} \int_0^\infty \psi_k(T, \theta) g_w(t, T; \theta) \pi^*_2(\theta \mid x_K) d\theta, \quad (4.9)$$

where

$$\psi_k(T, \theta) = \frac{\binom{n}{k} \exp[-(n - k)\theta T][1 - \exp[-\theta T]^k}{\sum_{j=0}^{k-1} \binom{n}{j} \exp[-(n - j)\theta T][1 - \exp[-\theta T]^j}.$$

It does not seem to be possible to compute the probabilities in (4.7)–(4.9) analytically. Hence, we use the Markov Chain Monte Carlo (MCMC) technique for constructing the Bayesian prediction interval.
To compute $\int_{0}^{\infty} f(\theta)\pi_{1}(\theta \mid x_{r})\, d\theta$ by using the MCMC technique, we use the following procedure:

Step 1. Generate $\theta_{1} \sim \text{Gamma}(r + c, \sum_{i=1}^{r} x_{i} + (n - r)x_{r} + d)$;

Step 2. Repeat Step 1 and obtain $\theta_{1}, \theta_{2}, \ldots, \theta_{N}$;

Step 3. The approximate value of $\int_{0}^{\infty} f(\theta)\pi_{1}(\theta \mid x_{r})\, d\theta$ is then obtained as

$$\int_{0}^{\infty} f(\theta)\pi_{1}(\theta \mid x_{r})\, d\theta = \frac{\sum_{i=1}^{N} f(\theta_{i})}{N}.$$

Similarly, we can use the above algorithm to compute $\int_{0}^{\infty} g(\theta)\pi_{2}(\theta \mid x_{K})\, d\theta$.

4.1.2. Two-Sample Bayesian Prediction

The predictive survival function of $Y_{s,m}$ in this special case is obtained as follows:

Case I.

$$\overline{F}_{Y_{s,m}}(t \mid x_{r}) = I_{1}^{-1} \sum_{w=0}^{r-1} \frac{C_{3}}{m - s + w + 1} \left(\sum_{i=1}^{r} x_{i} + (n - r)x_{r} + (m - s + w + 1)t + d \right)^{-(r+c)},$$

(4.10)

where

$$I_{1} = \left(\sum_{i=1}^{r} x_{i} + (n - r)x_{r} + d \right)^{-(r+c)}.$$

Case II.

$$\overline{F}_{2Y_{s,m}}(t \mid x_{K}) = I_{2}^{-1} \sum_{w=0}^{r-1} \frac{C_{3}}{m - s + w + 1} \left(\sum_{i=1}^{K} x_{i} + (n - K)T + (m - s + w + 1)t + d \right)^{-(K+c)},$$

(4.11)

where

$$I_{2} = \left(\sum_{i=1}^{K} x_{i} + (n - K)T + d \right)^{-(K+c)}.$$

4.2. Pareto(α, β) Model

The distribution function in this case is

$$F(x \mid \alpha, \beta) = 1 - \left(\frac{\beta}{x} \right)^{\alpha}, \quad x > \beta, \quad (4.12)$$
where \(\alpha > 0 \) and \(\beta > 0 \), and so we have

\[
\hat{\lambda}(x; \alpha, \beta) = \alpha \ln \left(\frac{x}{\beta} \right) \quad \text{and} \quad \hat{\lambda}'(x; \alpha, \beta) = \frac{\alpha}{x}.
\] (4.13)

Under the assumption that both parameters \(\alpha \) and \(\beta \) are unknown, we may consider a natural joint conjugate prior for \(\alpha \) and \(\beta \) which was suggested by Lwin (1972) and generalized by Arnold and Press (1989). The generalized Lwin prior or the power-gamma prior, denoted by \(PG(a, b, c, d) \), is given by

\[
\pi(\alpha, \beta; \delta) \propto x^\delta \beta^{-1} \exp \left[-\alpha \left(d + a \ln \left(\frac{b}{\beta} \right) \right) \right], \quad \alpha > 0, \quad \beta > 0,
\] (4.14)

where \(a, b, c, d \) are positive constants. This general prior is obtained by first specifying the prior for the parameter \(\alpha \) and then specifying the conditional prior for \(\beta \), given knowledge on the parameter \(\alpha \). More specifically, we take \(\pi(\alpha) \) as a gamma distribution with parameters \(c \) and \(d \), and \(\pi(\beta | \alpha) \) as a power function distribution with parameters \(a \alpha \) and \(b \) of the form

\[
\pi(\beta | \alpha) \propto \beta^{a \alpha - 1} b^{-a \alpha}, \quad 0 < \beta < b,
\]

to arrive at the joint prior given in (4.14). Thus, we have

\[
C(\alpha, \beta; \delta) = x^{\delta} \beta^{-1} \quad \text{and} \quad D(\alpha, \beta; \delta) = \alpha \left\{ d + a \ln \left(\frac{b}{\beta} \right) \right\},
\] (4.15)

where \(\delta = (a, b, c, d) \).

Hence, the posterior density function is obtained as follows:

Case I.

\[
\pi^*_1(\alpha, \beta | x_r) = \pi^*_{11}(\alpha | x_r) \pi^*_{12}(\beta | x_r),
\] (4.16)

where

\[
\pi^*_{11}(\alpha | x_r) = \frac{[I_1(x_r, L)]^{r+c}}{I(r+c)} x^{r+c-1} \exp[-\alpha I_1(x_r, L)],
\] (4.17)

\[
\pi^*_{12}(\beta | x, x_r) = \alpha(n + a) \beta^{a(n+a)-1} L^{-a(n+a)},
\] (4.18)

\[
I_1(x_r, z) = \sum_{i=1}^r \ln \left(\frac{z}{z_i} \right) + (n-r) \ln \left(\frac{z}{z_r} \right) + n \ln \left(\frac{z}{z} \right) + d \quad \text{and} \quad L = \min(x_1, b);
\]

Case II.

\[
\pi^*_2(\alpha, \beta | x_K) = \pi^*_{21}(\alpha | x_K) \pi^*_{22}(\beta | x, x_K),
\] (4.19)

where

\[
\pi^*_{21}(\alpha | x_K) = \frac{[I_2(x_K, L)]^{K+c}}{I(K+c)} x^{K+c-1} \exp[-\alpha I_2(x_K, L)],
\] (4.20)

\[
\pi^*_{22}(\beta | x, x_K) = \alpha(n + a) \beta^{a(n+a)-1} L^{-a(n+a)},
\] (4.21)

and \(I_2(x_K, z) = \sum_{i=1}^K \ln \left(\frac{z}{z_i} \right) + (K-n) \ln \left(\frac{z}{z} \right) + a \ln \left(\frac{z}{z} \right) + d \).
4.2.1. One-Sample Bayesian Prediction. The predictive survival function of $X_{x,r}$ in this special case is obtained as follows:

Case I.

$$
\overline{F}_1^*(t | x_r) = \begin{cases}
\overline{F}_1^*(t | x_r), & x_r < t \leq T, \\
\overline{F}_2^*(t | x_r), & t > T,
\end{cases}
$$

where

$$
\overline{F}_1^*(t | x_r) = \sum_{k=r}^{\infty} \sum_{s=0}^{n-k} \sum_{q=0}^{s-r-1} \frac{C_1}{k-s-w+q+1} \int_0^L \int_0^\infty \phi_k(T, \theta) \\
\times \{h_{k,w,q}(t, x_r, T; \theta) - h_{k,w,q}(T, x_r, T; \theta)\} \pi_1^*(x, \beta | x_r) dx \, d\beta \\
+ \sum_{k=r}^{n-1-k-1} \sum_{s=0}^{n-s+w+1} \frac{C_2}{n-s+w+1} \int_0^L \int_0^\infty \phi_k(T, \theta) \pi_1^*(x, \beta | x_r) dx \, d\beta
$$

(4.22)

and

$$
\overline{F}_2^*(t | x_r) = \sum_{k=r}^{n-1-k-1} \sum_{s=0}^{n-s+w+1} \frac{C_2}{n-s+w+1} \int_0^L \int_0^\infty \phi_k(T, \theta) g_w(t, T; \theta) \pi_2^*(x, \beta | x_r) dx \, d\beta.
$$

(4.23)

with

$$
\phi_k(T, \theta) = \frac{\binom{\nu}{k} \exp \left[- (n-k)z \ln \left(\frac{T}{\beta} \right) \right] \left[1 - \exp[-z \ln \left(\frac{T}{\beta} \right)] \right]^k}{\sum_{j=0}^{\nu} \binom{\nu}{j} \exp \left[- (n-j)z \ln \left(\frac{T}{\beta} \right) \right] \left[1 - \exp[-z \ln \left(\frac{T}{\beta} \right)] \right]^j}
$$

$$
h_{k,w,q}(x, y, z; \theta) = \frac{\exp[-z(s-r-q-1)\ln \left(\frac{T}{\beta} \right) + w \ln \left(\frac{T}{\beta} \right) + (k-s-w+q+1) \ln \left(\frac{T}{\beta} \right)]}{\left[\exp[-z \ln \left(\frac{T}{\beta} \right)] - \exp[-z \ln \left(\frac{T}{\beta} \right)] \right]^{k-r}}
$$

and

$$
g_w(t, T; \theta) = \exp \left[-(n-s+w+1)z \ln \left(\frac{T}{\beta} \right) \right].
$$

Case II.

$$
\overline{F}_2^*(t | x_k) = \sum_{k=0}^{n-1-k-1} \sum_{s=0}^{n-s+w+1} \frac{C_2}{n-s+w+1} \int_0^L \int_0^\infty \psi_k(T, \alpha, \beta) g_w(t, T; \alpha, \beta) \pi_2^*(x, \beta | x_k) dx \, d\beta.
$$

(4.24)

where

$$
\psi_k(T; \alpha, \beta) = \frac{\binom{\nu}{k} \exp \left[- (n-k)z \ln \left(\frac{T}{\beta} \right) \right] \left[1 - \exp[-z \ln \left(\frac{T}{\beta} \right)] \right]^k}{\sum_{j=0}^{\nu-1} \binom{\nu}{j} \exp \left[- (n-j)z \ln \left(\frac{T}{\beta} \right) \right] \left[1 - \exp[-z \ln \left(\frac{T}{\beta} \right)] \right]^{j}}.
$$
Bayesian Prediction Based on Hybrid Censored Data

It does not seem to be possible to compute the probabilities in (4.22)–(4.24) analytically. Hence, we use the Gibbs sampling technique to generate MCMC samples, and then use the MCMC technique for constructing the Bayesian prediction interval.

To compute \(\int_0^L \int_0^\infty f(x, \beta) \pi_1(x, \beta \mid x_r) dx \ d\beta \) by using the MCMC technique, we use the following procedure:

Step 1. Generate \(x_1 \sim \text{Gamma}(r + c, \sum_{i=1}^r \ln \left(\frac{x_i}{L} \right) + (n - r) \ln \left(\frac{y}{L} \right) + a \ln \left(\frac{y}{L} \right) + d) \);

Step 2. Generate \(\beta_1 \sim \text{Power function}(x_1(n + a), L) \);

Step 3. Repeat Steps 1 and 2 and obtain \((x_1, \beta_1), (x_2, \beta_2), \ldots, (x_N, \beta_N)\);

Step 4. The approximate value of \(\int_0^L \int_0^\infty f(x, \beta) \pi_1(x, \beta \mid x_r) dx \ d\beta \) is then obtained as

\[
\int_0^L \int_0^\infty f(x, \beta) \pi_1(x, \beta \mid x_r) dx \ d\beta = \frac{\sum_{i=1}^N f(x_i, \beta_i)}{N}.
\]

Similarly, we can use the above algorithm to compute \(\int_0^L \int_0^\infty g(x, \beta) \pi_2(x, \beta \mid x_k) dx \ d\beta \).

4.2.2. Two-Sample Bayesian Prediction

The predictive density function of \(Y_{1Y} \) in this special case is obtained as follows:

Case I.

\[
f_{1Y}^*(y \mid x_r) = \begin{cases} f_{11Y}(y \mid x_r), & 0 < y \leq L, \\ f_{12Y}(y \mid x_r), & y > L, \end{cases}
\] (4.25)

where

\[
f_{11Y}(y \mid x_r) = \int_0^y \int_0^\infty f_{Y_r}(y \mid x, \beta) \pi_1(x, \beta \mid x_r) dx \ d\beta
\]

\[= \frac{(r + c)(n + a)[I_1(x_r, L)]^{r+c}}{y[I_1(x_r, y)]^{r+c+1}} \sum_{u=0}^{r-1} \frac{C_3}{n + a + m - s + w + 1}, \quad 0 < y \leq L;
\]

and

\[
f_{12Y}(y \mid x_r) = \int_0^L \int_0^\infty f_{Y_r}(y \mid x, \beta) \pi_1(x, \beta \mid x_r) dx \ d\beta
\]

\[= \frac{(r + c)(n + a)}{I_1(x_r, L)} \sum_{u=0}^{r-1} \frac{C_3}{n + a + m - s + w + 1}
\]

\[\times \frac{1}{y} \left[1 + \frac{(m - s + w + 1) \ln \left(\frac{y}{L} \right)^{-(r+c)}}{I_1(x_r, L)} \right], \quad y > L.
\]

Case II.

\[
f_{2Y}^*(y \mid x_k) = \begin{cases} f_{21Y}(y \mid x_k), & 0 < y \leq L, \\ f_{22Y}(y \mid x_k), & y > L, \end{cases}
\] (4.26)
where

\[f_{21Y_{e^n}}(y \mid x_K) = \int_0^y \int_0^{\infty} f_{Y_{e^n}}(y \mid z, \beta) \pi_z^2(z, \beta \mid x_K) dx \, d\beta \]

\[= \frac{(K + c)(n + a)[I_2(x_K, L)]^{K+c}}{y[I_2(x_K, y)]^{K+c+1}} \sum_{u=0}^{s-1} \frac{C_3}{n + a + m - s + w + 1}, \quad 0 < y \leq L, \]

and

\[f_{22Y_{e^n}}(y \mid x_K) = \int_0^L \int_0^{\infty} f_{Y_{e^n}}(y \mid z, \beta) \pi_z^2(z, \beta \mid x_K) dx \, d\beta \]

\[= \frac{(K + c)(n + a)}{y I_2(x_K, L)} \sum_{u=0}^{s-1} \frac{C_3}{n + a + m - s + w + 1} \times \left[1 + \frac{(m - s + w + 1) \ln \left(\frac{y}{L} \right)}{I_2(x_K, L)} \right]^{-(K+c+1)}, \quad y > L. \]

From (4.25) and (4.26), we simply obtain the predictive survival function as follows:

Case I.

\[\overline{F}_{1Y_{e^n}}(t \mid x_r) = \begin{cases} \overline{F}_{11Y_{e^n}}(t \mid x_r), & 0 < t \leq L, \\ \overline{F}_{12Y_{e^n}}(t \mid x_r), & t > L, \end{cases} \quad (4.27) \]

where

\[\overline{F}_{11Y_{e^n}}(t \mid x_r) = \int_t^L \int_0^{\infty} f_{11Y_{e^n}}(y \mid x_r) dy + \int_0^L f_{12Y_{e^n}}(y \mid x_r) dy \]

\[= \sum_{u=0}^{s-1} \frac{C_3}{n + a + m - s + w + 1} \left(1 - \left[\frac{I_1(x_r, t)}{I_1(x_r, L)} \right]^{-(r+c)} \right) \]

\[+ (n + a) \sum_{u=0}^{s-1} \frac{C_3}{(n + a + m - s + w + 1)(m - s + w + 1)}, \]

and

\[\overline{F}_{12Y_{e^n}}(t \mid x_r) = \int_t^{\infty} f_{12Y_{e^n}}(y \mid x_r) dy \]

\[= (n + a) \sum_{u=0}^{s-1} \frac{C_3}{(n + a + m - s + w + 1)(m - s + w + 1)} \times \left[1 + \frac{(m - s + w + 1) \ln \left(\frac{y}{L} \right)}{I_2(x_r, L)} \right]^{-(r+c)}; \]
Bayesian Prediction Based on Hybrid Censored Data 81

Case II.

\[\overline{F}_{2Y_{m}}^*(t | x_K) = \begin{cases} \overline{F}_{21Y_{m}}^*(t | x_K), & 0 < t \leq L, \\ \overline{F}_{22Y_{m}}^*(t | x_K), & t > L, \end{cases} \] (4.28)

where

\[\overline{F}_{21Y_{m}}^*(t | x_K) = \int_t^L f_{21Y_{m}}^*(y | x_K)dy + \int_t^\infty f_{22Y_{m}}^*(y | x_K)dy \]

\[= \sum_{j=0}^{s-1} \frac{C_3}{(n+a+m-s+w+1)} \left(1 - \frac{I_2(x_K, t)}{I_2(x_K, L)} \right)^{(K+c)} \]

\[+ (n+a) \sum_{w=0}^{s-1} \frac{C_3}{(n+a+m-s+w+1)(m-s+w+1)}, \]

and

\[\overline{F}_{22Y_{m}}^*(t | x_K) = \int_t^\infty f_{22Y_{m}}^*(y | x_K)dy \]

\[= (n+a) \sum_{w=0}^{s-1} \frac{C_3}{(n+a+m-s+w+1)(m-s+w+1)} \]

\[\times \left[1 + \frac{(m-s+w+1) \ln \left(\frac{t}{L} \right)}{I_2(x_K, L)} \right]^{-(K+c)}. \]

5. Numerical Results

To illustrate the inferential procedures developed in the preceding sections, we present here a numerical study for the Exponential(\(\theta\)) distribution when \(\theta\) is unknown and the Pareto(\(\alpha, \beta\)) distribution when both parameters \(\alpha\) and \(\beta\) are unknown.

Example 5.1. To illustrate the prediction results for the Exponential(\(\theta\)) distribution when \(\theta\) is unknown, let us consider the data given by Bartholomew (1963) consisting of lifetimes of 20 items on a life-test for a pre-fixed time of 150 h. During that period, 15 items failed with the following lifetimes, measured in hours:

3, 19, 23, 26, 27, 37, 38, 41, 45, 58, 84, 90, 99, 109, and 138.

We shall use these data to consider two different Type-I hybrid censoring schemes:

1. When \(r = 15\) and \(T = 130\). Since \(T < x_{15.20}\), the life-test would have terminated in this case at \(T\), and we would have obtained the following data: 3, 19, 23, 26, 27, 37, 38, 41, 45, 58, 84, 90, 99, and 109;

2. When \(r = 15\) and \(T = 150\). Since \(x_{15.20} < T\), the life-test would have terminated in this case at time \(x_{15.20} = 138\), and we would have obtained the following data: 3, 19, 23, 26, 27, 37, 38, 41, 45, 58, 84, 90, 99, 109, and 138.
As done previously by Bartholomew (1963) and Childs et al. (2003), we assume these data to have come from the Exponential(\(\theta\)) distribution, where \(\theta\) is unknown. Based on the above two Type-I hybrid censoring schemes, we then used the results presented earlier in Sec. 4.1 to construct 95% one-sample Bayesian prediction intervals for OS \(X_{x,n}\), \(s = 16, \ldots, 20\), from the same sample as well as 95% two-sample Bayesian prediction intervals for OS \(Y_{x,m}\), \(s = 1, 5, 10, 15, 20\), from a future sample of size \(m = 20\). To examine the sensitivity of the Bayesian prediction intervals with respect to the hyperparameters \((c, d)\), Table 1 presents the lower and upper 95% one-sample Bayesian prediction bounds for \(X_{x,n}\), \(s = 16, \ldots, 20\), for the choices of \(c = 0.9, 1, 1.1\) and \(d = 50, 55, 60\). Similarly, the lower and upper 95% two-sample Bayesian prediction bounds for \(Y_{x,m}\), \(s = 1, 5, 10, 15, 20\), for the choices of \(c = 0.9, 1, 1.1\) and \(d = 50, 55, 60\), are presented in Table 2.

Example 5.2. To illustrate the prediction results for the Pareto(\(x, \beta\)) distribution when both parameters \(x\) and \(\beta\) are unknown, we generated OS from a sample of size \(n = 20\) from the Pareto distribution. The generated OS from the Pareto distribution (with \(x = 3\) and \(\beta = 6\)) are as follows:

\[
\begin{align*}
6.046, & \quad 6.229, \quad 6.445, \quad 6.493, \quad 6.856, \quad 7.061, \quad 7.097, \quad 7.100, \quad 7.163, \quad 7.226, \quad 7.344, \quad 8.910, \\
9.290, & \quad 9.360, \quad 9.525, \quad 9.836, \quad 10.263, \quad 11.113, \quad 15.769, \quad \text{and} \quad 39.211.
\end{align*}
\]

We will use these data to consider two different Type-I hybrid censoring schemes:

1. When \(r = 15\) and \(T = 9.4\), Since \(T < x_{15:20}\), the life-test would have terminated in this case at \(T\), and we would have obtained the following data: 6.046, 6.229, 6.445, 6.493, 6.856, 7.061, 7.097, 7.100, 7.163, 7.226, 7.344, 8.910, 9.290, and 9.360;

2. When \(r = 15\) and \(T = 9.6\). Since \(x_{15:20} < T\), the life-test would have terminated in this case at time \(x_{15:20}\), and we would have obtained the following data: 6.046, 6.229, 6.445, 6.493, 6.856, 7.061, 7.097, 7.100, 7.163, 7.226, 7.344, 8.910, 9.290, 9.360, and 9.525.

We assume these data to have come from the Pareto(\(x, \beta\)) distribution, where both parameters \(x\) and \(\beta\) are unknown. Based on the above two Type-I hybrid censoring schemes, we then used the results presented earlier in Sec. 4.2 to construct 95% one-sample Bayesian prediction intervals for OS \(X_{x,n}\), \(s = 16, \ldots, 20\), from the same sample as well as 95% two-sample Bayesian prediction intervals for OS \(Y_{x,m}\), \(s = 1, 5, 10, 15, 20\), from a future sample of size \(m = 20\). To examine the sensitivity of the Bayesian prediction intervals with respect to the hyperparameters \((a, b, c, d)\), we used three different choices of the hyperparameters \((a, b, c, d)\): (1, 9, 3, 1), (1, 9, 6, 2), (1, 9, 9, 3). The corresponding results for the one-sample and two-sample predictions, for these three choices of the hyperparameters, are presented in Tables 3 and 4, respectively.

6. **Concluding Remarks**

1. From Tables 1–4, we notice that, when we use the same value of \(r\) but larger \(T\), the Bayesian prediction bounds become tighter as expected since the duration of the life-testing experiment is longer in this case.
Table 1

95% one-sample Bayesian prediction bounds for $X_{x,s}$, $s = 16, \ldots, 20$, from the exponential distribution

<table>
<thead>
<tr>
<th>r = 15 and $T = 130$</th>
<th>r = 15 and $T = 150$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d = 50</td>
<td>d = 55</td>
</tr>
<tr>
<td>c s $L_{X_{c,s}}$ $U_{X_{c,s}}$ $L_{X_{c,s}}$ $U_{X_{c,s}}$</td>
<td></td>
</tr>
<tr>
<td>20 158.862 458.486 158.822 459.879 158.930 461.272 142.406 350.914 142.421 351.740 142.300 349.450 139.669 271.086 139.771 272.609 139.882 274.131</td>
<td></td>
</tr>
<tr>
<td>20 177.283 574.033 177.476 575.784 177.670 577.356 145.679 465.392 145.713 466.551 145.747 467.709 150.811 727.308 151.244 729.314 151.676 731.319</td>
<td></td>
</tr>
<tr>
<td>1 18 158.442 455.065 158.568 456.443 158.693 457.823 142.223 346.147 142.243 346.919 142.262 347.690 151.557 731.828 151.991 733.846 152.424 735.864</td>
<td></td>
</tr>
<tr>
<td>19 177.283 574.033 177.476 575.784 177.670 577.356 145.679 465.392 145.713 466.551 145.747 467.709</td>
<td></td>
</tr>
<tr>
<td>20 158.862 458.486 158.822 459.879 158.930 461.272 142.406 350.914 142.421 351.740 142.300 349.450 139.669 271.086 139.771 272.609 139.882 274.131</td>
<td></td>
</tr>
<tr>
<td>1 18 158.442 455.065 158.568 456.443 158.693 457.823 142.223 346.147 142.243 346.919 142.262 347.690 151.557 731.828 151.991 733.846 152.424 735.864</td>
<td></td>
</tr>
<tr>
<td>19 177.283 574.033 177.476 575.784 177.670 577.356 145.679 465.392 145.713 466.551 145.747 467.709</td>
<td></td>
</tr>
<tr>
<td>20 158.862 458.486 158.822 459.879 158.930 461.272 142.406 350.914 142.421 351.740 142.300 349.450 139.669 271.086 139.771 272.609 139.882 274.131</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
95% two-sample Bayesian prediction bounds for $Y_{x,n}$, $s = 1, 5, 10, 15, 20$, from the exponential distribution

<table>
<thead>
<tr>
<th>$r = 15$ and $T = 130$</th>
<th>$r = 15$ and $T = 150$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 50$</td>
<td>$d = 55$</td>
</tr>
<tr>
<td>c</td>
<td>s</td>
</tr>
<tr>
<td>1</td>
<td>0.125</td>
</tr>
<tr>
<td>5</td>
<td>8.386</td>
</tr>
<tr>
<td>0.9</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>61.521</td>
</tr>
<tr>
<td>20</td>
<td>155.164</td>
</tr>
<tr>
<td>1</td>
<td>0.125</td>
</tr>
<tr>
<td>5</td>
<td>8.337</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>61.193</td>
</tr>
<tr>
<td>20</td>
<td>154.298</td>
</tr>
<tr>
<td>1</td>
<td>0.124</td>
</tr>
<tr>
<td>5</td>
<td>8.289</td>
</tr>
<tr>
<td>1.1</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>60.836</td>
</tr>
<tr>
<td>20</td>
<td>153.443</td>
</tr>
</tbody>
</table>
Table 3
95% two-sample Bayesian prediction bounds for $X_{s/a}$, $s = 16, \ldots, 20$, from the Pareto distribution

<table>
<thead>
<tr>
<th>(a, b, c, d)</th>
<th>$(r = 15 \text{ and } T = 9.4)$</th>
<th>$(r = 15 \text{ and } T = 9.6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$(1, 9, 3, 1)$</td>
<td>$(1, 9, 3, 2)$</td>
</tr>
<tr>
<td>s</td>
<td>$L_{X_{s/a}}$</td>
<td>$U_{X_{s/a}}$</td>
</tr>
</tbody>
</table>
Table 4
95% two-sample Bayesian prediction bounds for $Y_{s,m}$, $s = 1, 5, 10, 15, 20$, from the Pareto distribution

<table>
<thead>
<tr>
<th>(a, b, c, d)</th>
<th>$(1, 9, 3, 1)$</th>
<th>$(1, 9, 3, 2)$</th>
<th>$(1, 9, 4, 1)$</th>
<th>$(1, 9, 3, 1)$</th>
<th>$(1, 9, 3, 2)$</th>
<th>$(1, 9, 4, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>$L_{X_{1a}}$</td>
<td>$U_{X_{1a}}$</td>
<td>$L_{X_{1a}}$</td>
<td>$U_{X_{1a}}$</td>
<td>$L_{X_{1a}}$</td>
<td>$U_{X_{1a}}$</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>5.693</td>
<td>6.446</td>
<td>5.642</td>
<td>6.509</td>
<td>5.714</td>
<td>6.421</td>
</tr>
<tr>
<td>5</td>
<td>6.067</td>
<td>7.730</td>
<td>6.070</td>
<td>8.023</td>
<td>6.065</td>
<td>7.609</td>
</tr>
<tr>
<td>15</td>
<td>7.574</td>
<td>16.813</td>
<td>7.838</td>
<td>19.630</td>
<td>7.489</td>
<td>15.700</td>
</tr>
<tr>
<td>20</td>
<td>10.975</td>
<td>135.895</td>
<td>12.012</td>
<td>217.714</td>
<td>10.652</td>
<td>110.864</td>
</tr>
</tbody>
</table>

$r = 15$ and $T = 9.4$

$r = 15$ and $T = 9.6$
2. It is evident from Tables 1 and 2 that, in the case of the exponential distribution, the lower as well as upper bounds are relatively insensitive to the specification of the hyperparameters \((c, d)\).

3. It is also evident from Tables 3 and 4 that, in the case of the Pareto distribution, the lower bounds are relatively insensitive to the specification of the hyperparameters \((a, b, c, d)\) while the upper bounds are somewhat sensitive.

4. If the vector of prior parameters \(\delta\) is unknown, the empirical Bayes approach could be used in estimating such prior parameters based on past samples; see, for example, Maritz and Lwin (1989). Alternatively, one could use the hierarchical Bayesian method in which some suitable prior for \(\delta\) could be proposed; see, for example, Geisser (1990) and Bernardo and Smith (1994). Work in these directions are currently under progress and we hope to report these findings in a future article.

Acknowledgments

The authors would like to express their thanks to the referees for their useful comments and suggestions on the original version of this article, which led to this improved version. The second author also acknowledges the support of the National Sciences and Engineering Research Council of Canada and the research grant (Number KSO-VPP-107) from King Saud University, Riyadh, Saudi Arabia, for conducting this research.

References

