OPER 441: Modeling and Simulation Tutorial: Handout #1

Q.1

(a) Plot the distribution function

$$F(x) = \begin{cases} 0 & \text{for } x \le 0, \\ x^3 & \text{for } 0 < x < 1, \\ 1 & \text{for } x \ge 1. \end{cases}$$

- (b) Determine the corresponding density function f(x) in the three regions (i) $x \le 0$, (ii) 0 < x < 1, and (iii) $1 \le x$.
- (c) What is the mean of the distribution?
- (d) If X is a random variable following the distribution specified in (a), evaluate $Pr\{\frac{1}{4} \le X \le \frac{3}{4}\}$.

Q.2 Let Z be a discrete random variable having possible values 0, 1, 2, and 3 and probability mass function

$$p(0) = \frac{1}{4}, \qquad p(2) = \frac{1}{8},$$
$$p(1) = \frac{1}{2}, \qquad p(3) = \frac{1}{8}.$$

- (a) Plot the corresponding distribution function.
- (b) Determine the mean E[Z].
- (c) Evaluate the variance Var[Z].

Q.4 Suppose X is a random variable having the probability density function

$$f(x) = \begin{cases} Rx^{R-1} & \text{for } 0 \le x \le 1, \\ 0 & \text{elsewhere,} \end{cases}$$

where R > 0 is a fixed parameter.

- (a) Determine the distribution function $F_x(x)$.
- (b) Determine the mean E[X].
- (c) Determine the variance Var[X].

Q.5 A random variable V has the distribution function

$$F(v) = \begin{cases} 0 & \text{for } v < 0, \\ 1 - (1 - v)^{A} & \text{for } 0 \le v \le 1 \\ 1 & \text{for } v > 1, \end{cases}$$

where A > 0 is a parameter. Determine the density function, mean, and variance.

Q.6 Determine the distribution function, mean, and variance corresponding to the triangular density.

$$f(x) = \begin{cases} x & \text{for } 0 \le x \le 1, \\ 2 - x & \text{for } 1 \le x \le 2, \\ 0 & \text{elsewhere.} \end{cases}$$

Q.7 Suppose *X* is a random variable with finite mean μ and variance σ^2 , and Y = a + bX for certain constants $a, b \neq 0$. Determine the mean and variance for *Y*.

Q.8 Determine the mean and variance for the probability mass function

$$p(k) = \frac{2(n-k)}{n(n-1)}$$
 for $k = 1, 2, ..., n$.

Q.9 Random variables *X* and *Y* are independent and have the probability mass functions

$$p_X(0) = \frac{1}{2}, \quad p_Y(1) = \frac{1}{6},$$

$$p_X(3) = \frac{1}{2}, \quad p_Y(2) = \frac{1}{3},$$

$$p_Y(3) = \frac{1}{2}.$$

Determine the probability mass function of the sum Z = X + Y.

Q.10 Random variables U and V are independent and have the probability mass functions

$$p_{\nu}(0) = \frac{1}{3}, \quad p_{\nu}(1) = \frac{1}{2},$$
$$p_{\nu}(1) = \frac{1}{3}, \quad p_{\nu}(2) = \frac{1}{2}.$$
$$p_{\nu}(2) = \frac{1}{3},$$

Determine the probability mass function of the sum W = U + V.

Q.11 Let *U*, *V*, and *W* be independent random variables with equal variances σ^2 . Define X = U + W and Y = V - W. Find the covariance between *X* and *Y*.

Q.12 A fair die is rolled 10 times. What is the probability that the rolled die will not show an even number?

- **Q.13.** Suppose that five fair coins are tossed independently. What is the probability that exactly one of the coins will be different from the remaining four?
- **Q.14.** John Doe's daily chores require making 10 round trips by car between two towns. Once through with all 10 trips, Mr. Doe can take the rest of the day off, a good enough motivation to drive above the speed limit. Experience shows that there is a 40% chance of getting a speeding ticket on any round trip.
- a. What is the probability that the day will end without a speeding ticket?
- b. If each speeding ticket costs \$80, what is the average daily fine?
- **Q.15.** Customers arrive at a service facility according to a Poisson distribution at the rate of four per minute. What is the probability that at least one customer will arrive in any given 30-second interval?
- Q.16 Customers arrive randomly at a checkout counter at the average rate of 20 per hour.(a) Determine the probability that the counter is idle.
 - (b) What is the probability that at least two people are in line awaiting service?

Excel Application:

Consider a minimarket on a highway. Customers enter the minimarket randomly. Each customer spends a random amount of time in the minimarket to get his purchases. Data is collected on a given day for 40 customers.

	Arrival	Service	
Cust.	time	time	Spending
#	(min)	(min)	(SR)
1	5	5	68
2	13	4	35
3	21	14	63
4	32	3	65
5	34	1	57
6	42	5	66
7	46	6	51
8	47	5	52
9	54	1	53
10	58	2	27
11	60	1	42
12	73	2	45
13	73	3	58
14	86	2	40
15	90	8	29
16	91	6	34
17	106	2	57
18	111	2	34
19	115	4	60
20	118	7	44
21	120	3	43
22	121	5	52
23	122	4	57
24	127	1	55
25	129	4	53
26	131	14	34
27	136	2	72
28	139	2	64
29	140	1	32
30	140	1	64

	Arrival	Service	
Cust.	time	time	Spending
#	(min)	(min)	(SR)
31	140	1	40
32	142	2	51
33	144	1	37
34	149	5	52
35	150	9	66
36	150	2	47
37	152	2	39
38	154	1	39
39	158	2	51
40	159	2	65
41	162	3	45
42	167	5	58
43	176	4	40
44	181	1	29
45	182	4	34
46	190	14	57
47	192	2	34
48	200	2	60
49	204	1	44
50	205	5	43
51	207	9	60
52	214	2	44
53	227	3	43
54	230	1	52
55	243	5	57
56	245	6	55
57	249	5	53
58	249	4	34
59	252	7	52
60	262	3	66

Using Excel answer the following:

- 1. Assume that the arrivals follow Poisson process. What is the parameter (λ cust./hr) for the distribution.
- 2. What is the average number of customers arrived to the market in one hour?
- 3. What is the variance of number of customers arrived in one hour?
- 4. From your answers in (2) and (3) do you thing that Possion Process is a good assumption?
- 5. Given your answer in (1), what is the probability that there is no arrival in one hour to the minimarket?
- 6. From the data what is the probability that there is no arrival in one hour to the minimarket?
- **7.** Given your answer in (1), what is the probability that there will be at least 10 customers arrived to the market in one hour?
- **8.** Assume that the time spent by each customer follow Exponential distribution. What is the parameter (μ) for the distribution.
- **9.** Find the mean and standard deviation for the exponential distribution of the time spent by customers in the market.
- 10. From your answers in (8) do you thing that Exponential distribution is a good assumption?
- **11.** Given your answer in (7), what is the probability that the customer will spend at least 5 minutes in the market?
- **12.** Given your answer in (7), what is the probability that the customer will spend more than 10 minutes in the market?
- **13.** From the data table, what is the probability that the customer will spend at least 5 minutes in the market?
- 14. Compare your answeres in (11) and (13) and justify?
- **15.** From the data table, what is the probability that the customer will spend more than 10 minutes in the market?
- 16. Compare your answeres in (12) and (15) and justify?