A shaper tool making orthogonal cutting, has a 10 degrees rake angle. The feed rate $=0.2 \mathrm{~mm} / \mathrm{rev}$, the depth of cut is 2 mm . The cutting speed is 100 $\mathrm{m} / \mathrm{min}$. The main cutting force is 3600 N and the feed (thrust) force is 2400 N . The shear angle is 35 degrees.
i. Draw the Merchant diagram [15 pt]

Note, the word "draw" implies that this must be done to scale (suggestion, use scale of $2 \mathrm{~cm}: 1,000 \mathrm{~N}$ ). The lengths of the forces in the diagram should be used to verify the actual values of the forces.

ii. Calculate, [25 pt]
(a) the coefficient of friction.

$$
\begin{aligned}
& \tan (\beta-\alpha)=\frac{F_{t}}{F_{c}}=\frac{2400 \mathrm{~N}}{3600 \mathrm{~N}}=0.6667 \\
& \beta-10^{\circ}=\tan ^{-1} 0.6667=33.69 \\
& \beta=10+33.69=43.69^{\circ}
\end{aligned}
$$

$$
\boldsymbol{\mu}=\tan \beta=\tan 43.69^{\circ}=\mathbf{0 . 9 6}
$$

(b) the shear stresses on the shear plane
$\tau_{s}=\frac{F_{s} \sin \varnothing}{t_{0} w}$
$F_{s}=F_{c} \cos \emptyset-F_{t} \sin \emptyset$
$=(3600)(\cos 35)-(2400)(\sin 35)=1572.36 N$
$\boldsymbol{\tau}_{\boldsymbol{s}}=\frac{F_{s} \sin \emptyset}{t_{0} w}=\frac{(1572.36 \mathrm{~N})(\sin 35)}{(2 \mathrm{~mm})(0.2 \mathrm{~mm})}=\mathbf{2 2 5 5} \frac{\boldsymbol{N}}{\mathbf{m m}^{\mathbf{2}}}$
Note how we used $w$ to mean and $t_{0}$ to mean
(c) the normal stress on the rake face
$\sigma=\frac{N}{t_{c} w}$
We need to find both $N$ and $t_{c}$
$\frac{t_{0}}{t_{c}}=\frac{\sin \varnothing}{\cos (\varnothing-\alpha)}$
$t_{c}=\frac{\cos (\emptyset-\alpha)}{\sin \emptyset} t_{0}=\frac{\cos \left(35^{\circ}-10^{\circ}\right)}{\sin 35^{\circ}}(2 \mathrm{~mm})=3.160 \mathrm{~mm}$

Now, consider the R-N-F triangle:

$$
\begin{gathered}
\begin{aligned}
& N=R \cos \beta=\sqrt{F_{c}^{2}+F_{t}^{2}} * \cos \beta=\sqrt{3600^{2}+2400^{2}} * \cos 43.69^{\circ} \\
&=4326.66 * 0.7231=3128.55 \mathrm{~N}
\end{aligned} \\
\boldsymbol{\sigma}=\frac{N}{t_{c} w}=\frac{3128.55 \mathrm{~N}}{(3.160 \mathrm{~mm})(0.2 \mathrm{~mm})}=4950 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
\end{gathered}
$$

## (d) the friction power

Power for friction $=U_{f}=F V_{c}$
We need to find both $F$ and $V_{c}$
Consider again the R-N-F triangle:
$F=R \sin \beta=4326.66 * \sin 43.69^{\circ}=4326.66 * 0.6908=2988.67 \mathrm{~N}$
$\frac{V}{\cos (\varnothing-\alpha)}=\frac{V_{c}}{\sin \varnothing}$
$V_{c}=\frac{\sin \emptyset}{\cos (\varnothing-\alpha)} V=\frac{\sin 35^{\circ}}{\cos \left(35^{\circ}-10^{\circ}\right)}(100 \mathrm{~m} / \mathrm{min})=63.29 \mathrm{~m} / \mathrm{min}$
$\boldsymbol{U}_{f}=F V_{c}=(2988.67 \mathrm{~N})(63.29 \mathrm{~m} / \mathrm{min})=189,145 \mathrm{~N} \cdot \frac{\mathrm{~m}}{\min }=\mathbf{3 . 1 5} \mathbf{k W}$
(e) the shearing power

Power for shearing $=U_{s}=F_{s} V_{s}$
We have $F_{s}$ and we need to find $V_{s}$ :
$V_{S}=\frac{\cos \alpha}{\cos (\varnothing-\alpha)} V=\frac{\cos 10^{\circ}}{\cos \left(35^{\circ}-10^{\circ}\right)}(100 \mathrm{~m} / \mathrm{min})=108.66 \mathrm{~m} / \mathrm{min}$
$\boldsymbol{U}_{s}=F_{s} V_{s}=(1572.36 \mathrm{~N})(108.66 \mathrm{~m} / \mathrm{min})=170,855 \mathrm{~N} \cdot \frac{\mathrm{~m}}{\mathrm{~min}}$
$=2.85 \mathrm{~kW}$
(f) the machining power

Machining power $=U_{t}=F_{c} V=(3600 \mathrm{~N})(100 \mathrm{~m} / \mathrm{min})$

$$
=360,000 \mathrm{~N} \cdot \frac{\mathrm{~m}}{\min }=\mathbf{6 . 0 0} \mathrm{kW}
$$

Check Answer:
$U_{t}=U_{f}+U_{s}=3.15 \mathrm{~kW}+2.85 \mathrm{kw}=6.00 \mathrm{~kW}$
(g) the specific cutting energy

$$
\begin{aligned}
\boldsymbol{u}_{t}=\frac{U_{t}}{w t_{0} V} & =\frac{6.00 \mathrm{~kW}}{(2 \mathrm{~mm})(0.2 \mathrm{~mm})(100 \mathrm{~m} / \mathrm{min})} \\
& =\frac{6,000 \mathrm{~W}}{(2 \mathrm{~mm})(0.2 \mathrm{~mm})(100 \mathrm{~m} / \mathrm{min})}\left(\frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}\right)(60 \mathrm{~s} / \mathrm{min}) \\
& =\mathbf{9 . 0} \mathbf{\mathbf { W } \cdot \mathbf { s } / \mathbf { m m } ^ { 3 }}
\end{aligned}
$$

Note, compare this to the table showing specific energy requirements for different materials.

