Questions 1-8. In an orthogonal cutting operation using a ceramic tool ($n=0.7$), $t_{o}=0.25 \mathrm{~mm}, V=400 \mathrm{~m} / \mathrm{min}, \alpha=15^{\circ}$, and $w=$ 8 mm . It is observed that $t_{c}=0.45 \mathrm{~mm}, F_{c}=600 \mathrm{~N}$, and the mean coefficient of friction in the cutting zone is 0.83 .

1. What is the value of the chip-compression factor?
A. 0.56
B. 0.25
C. 0.45
D. 0.11
E. 1.8

$$
\begin{gathered}
\text { chip-compression }=\frac{1}{r}=\frac{t_{c}}{t_{0}}=\frac{0.45 \mathrm{~mm}}{0.25 \mathrm{~mm}}=1.8 \\
r=\frac{1}{1.8}=0.5556
\end{gathered}
$$

2. What is the value of the shear angle?
A. 32.1°
B. 57.9°
C. 72.8°
D. 49.3°
E. 17.2°
$\tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha}=\frac{(0.5556)\left(\cos 15^{\circ}\right)}{1-(0.5556)\left(\sin 15^{\circ}\right)}=0.6267$
$\phi=\tan ^{-1} 0.6267=32.1^{\circ}$
3. What is the value of the shear strain?
A. 3.27
B. 1.72
C. 1.90
D. 3.54
E. 2.22
$\gamma=\cot \phi+\tan (\phi-\alpha)=\frac{1}{\tan 32.08^{\circ}}+\tan \left(32.08^{\circ}-15^{\circ}\right)=\mathbf{1 . 9 0}$
4. What is the value of the shear velocity?
A. $222 \mathrm{~m} / \mathrm{min}$
B. $404 \mathrm{~m} / \mathrm{min}$
C. $108 \mathrm{~m} / \mathrm{min}$
D. $1314 \mathrm{~m} / \mathrm{min}$
E. $723 \mathrm{~m} / \mathrm{min}$
$\boldsymbol{V}_{s}=V \cdot \frac{\cos \alpha}{\cos (\phi-\alpha)}=\frac{400\left[\frac{\mathrm{~m}}{\mathrm{~min}}\right] \cdot \cos 15^{\circ}}{\cos \left(32.1^{\circ}-15^{\circ}\right)}=404 \mathrm{~m} / \mathrm{min}$
5. What is the magnitude of the thrust force?
A. 1305 N
B. 80.2 N
C. 4488 N
D. 276 N
E. $545 N$
$F_{t}=F_{c} \tan (\beta-\alpha)$
$\tan \beta=\mu=0.83$
$\beta=\tan ^{-1} \mu=\tan ^{-1} 0.83=39.69^{\circ}$
$\Rightarrow \boldsymbol{F}_{\boldsymbol{t}}=600[N] * \tan \left(39.69^{\circ}-15^{\circ}\right)=275.9 \mathrm{~N}$
6. Find the required source power given a mechanical efficiency of $\mathbf{6 5 \%}$.
A. 369 kW
B. 4.0 kW
C. 240 kW
D. 2.6 kW
E. 6.15 kW

Power $_{\text {source }}=\frac{\text { Power }_{c}}{\eta_{\text {mech }}}$
Power $_{c}=F_{c} V=600(N) * 400\left(\frac{m}{m i n}\right)=240,000\left(\frac{N \cdot m}{m i n}\right)$

$$
=240\left(\frac{\mathrm{~kJ}}{\mathrm{~min}}\right) *\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=4.0 \mathrm{~kW}
$$

\Rightarrow Power $_{\text {source }}=\frac{4.0}{0.65}=6.15 \mathrm{~kW}$
7. What is the effect on increase in mean temperature of doubling the cutting speed?

C
A. increase in T by 74%
B. decrease in T by 74%
C. increase in T by 26%.
D. decrease in T by 26\%
E. increase in T by 41\%

Using the equation for mean temperature in orthogonal cutting (as given in the problem statement),
$T=\frac{0.000665 Y_{f}}{\rho c} \sqrt[3]{\frac{V t_{0}}{K}}$

$$
\begin{gathered}
\frac{\boldsymbol{T}_{2}-\boldsymbol{T}_{1}}{\boldsymbol{T}_{1}}=\frac{\sqrt[3]{V_{2}}-\sqrt[3]{V_{1}}}{\sqrt[3]{V_{1}}}=\frac{\sqrt[3]{2 V_{1}}-\sqrt[3]{V_{1}}}{\sqrt[3]{V_{1}}}=\frac{\sqrt[3]{2 V_{1}}}{\sqrt[3]{V_{1}}}-1=\sqrt[3]{\frac{2 V_{ \pm}}{V_{ \pm}}}-1 \\
=\sqrt[3]{2}-1=1.26-1=\mathbf{0} .26
\end{gathered}
$$

i.e. doubling the cutting speed resulted in a 26% increase in temperature, assuming all other parameters have not changed.
8. What is the effect on tool life of doubling the cutting speed?
A. reduction in tool life by 37.1\%
B. reduction in tool life by $\mathbf{6 2 . 9 \%}$
C. reduction in tool life by 61.6%
D. reduction in tool life by 38.4%
E. reduction in tool life by 50.0%
$V_{1} T_{1}^{n}=V_{2} T_{2}^{n} \Rightarrow\left(\frac{T_{2}}{T_{1}}\right)^{n}=\frac{V_{1}}{V_{2}} \Rightarrow \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{1 / n}=0.5^{(1 / 0.7)}=0.371$
$\Rightarrow \frac{T_{1}-T_{2}}{T_{1}}=1-0.371=0.629$
i.e. doubling the cutting speed has resulted in a 62.9% reduction in tool life

