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Almost Contact Lagrangian Submanifolds
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Abstract. For a Lagrangian submanifold M of S6 with nearly Kaehler
structure, we provide conditions for a canonically induced almost contact
metric structure on M by a unit vector field, to be Sasakian. Assuming
M contact metric, we show that it is Sasakian if and only if the second
fundamental form annihilates the Reeb vector field ξ, furthermore, if the
Sasakian submanifold M is parallel along ξ, then it is the totally geodesic
3-sphere. We conclude with a condition that reduces the normal canon-
ical almost contact metric structure on M to Sasakian or cosymplectic
structure.
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1. Introduction

In [8], Ejiri Showed that a Lagrangian submanifold of the nearly Kaehler
6-dimensional unit sphere S6 is orientable and minimal. Lagrangian submani-
folds of the nearly Kaehler unit 6-sphere were studied by Dillen and Vrancken
[6], Dillen et al. [7] and others. Deshmukh and Hadi [5] proved the following
result.

Theorem (D–H). Let M be a compact 3-dimensional Lagrangian submanifold
of S6 with nearly Kaehler structure (g, J). Then there exists a global unit vector
field ξ on M , and if Jξ is parallel in the normal bundle, then M is a Sasakian
manifold.

Their proof is based on the fact (see Martinet [9]) that a compact ori-
entable 3-dimensional manifold does carry a contact structure, and the con-
struction of a canonical almost contact metric structure defined by
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ϕX = G(X,Jξ) where J is the almost complex structure and G is the covari-
ant derivative of J and X an arbitrary vector field tangent to M . Intrigued
by this result, Vrancken [12] showed that the second fundamental form of a
Sasakian Lagrangian submanifold M of the nearly Kaehler unit 6-sphere an-
nihilates the Reeb vector field, and provided a complete classification of such
submanifolds. In this context, as the second fundamental form annihilates ξ,
Chen’s basic equality (see [3]) is satisfied (see [6]).

In this paper, we examine the more general situation when M (not neces-
sarily compact) admits a global unit vector field ξ, and show that this induces
a canonical almost contact metric structure on M with the metric induced
by embedding, and an underlying (1,1)-tensor field F on M . We will consider
two cases when the canonical structure is (i) contact metric, and (ii) normal
almost contact metric; and show that the structure reduces to Sasakian in case
(i) and Sasakian or Cosymplectic in case (ii), under the assumption that F is
divergence-free.

Let us briefly review the Lagrangian submanifolds of the nearly Kaehler
6-sphere. Let J be the almost complex structure defined on S6 inherited from
the Cayley division algebra [8]. Then (S6, J, g) is a nearly Kaehler manifold,
where g is the standard metric on S6 of constant curvature 1. Define a tensor
field G of type (1,2) on S6 by G(X,Y ) = (∇̄XJ)(Y ), where X,Y are arbitrary
vector fields on S6, and ∇̄ the Riemannian connection on S6 with respect to
the Riemannian metric g on S6. G satisfies the following properties (see [7,8]):

G(X,Y ) = −G(Y,X) (1)
G(X,JY ) = −JG(X,Y ) (2)

g(G(X,Y ), Z) = −g(G(X,Z), Y ) (3)
g(G(X,Y ), G(Z,W )) = g(X,Z)g(Y,W ) − g(X,W )g(Y,Z)

+g(JX,Z)g(Y, JW ) − g(JX,W )g(Y, JZ) (4)
(∇̄XG)(Y,Z) = g(Y, JZ)X + g(X,Z)JY − g(X,Y )JZ (5)

where X,Y,Z are arbitrary vector fields on S6.
We denote the metrics of S6 and its submanifold M by the same letter

g, and the normal bundle of M by ν. If JTM = ν, where TM is the tangent
bundle of M , then M is said to be a Lagrangian submanifold of S6. If ∇ and
∇⊥ denote the Riemannian connection induced on M , and the connection in
the normal bundle ν respectively, then we have (see [8])

∇⊥
XJY = J∇XY + G(X,Y ) (6)

σ(X,Y ) = JAJY X (7)
JG(X,JG(Y,Z)) = g(X,Z)Y − g(X,Y )Z (8)

− σ(X,JG(Y,Z)) + JG(σ(X,Y ), Z) + JG(Y, σ(Z,X)) = 0 (9)

where X,Y ∈ X(M), σ is the second fundamental form and AJY is the Wein-
garten map with respect to the normal vector field JY . Vrancken has pointed
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out (private communication) that the minus sign in the first term of Eq. (9)
is missing in [8] and also on p. 403 in [3]. The correct form appears in the
Lemma 3.2 of the paper [13] of Schafer–Smoczyk.

Let us also review almost contact metric structures. A (2n+1)-dimensional
smooth manifold M is said to be an almost contact metric manifold if carries
a global 1-form η, a vector field ξ, a (1,1)-tensor field ϕ, and a Riemannian
metric g satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ) (10)

Obviously, ϕξ = 0, η◦ϕ = 0, g(X, ξ) = η(X), and ξ is unit. The almost contact
metric structure (η, ξ, g) on M is called a contact metric structure if

(dη)(X,Y ) = g(X,ϕY ).

For a contact metric manifold, following Blair [1], we define a (1,1) tensor
h = 1

2Lξϕ which is known to be self-adjoint, trace-free, anti-commutes with
ϕ, and annihilates ξ. We have the following formulas for a contact metric
manifold:

∇Xξ = −ϕX − ϕhX (11)
Ric(ξ, ξ) = 2n − |h|2. (12)

The special case when h = 0 corresponds to K-contact metrics for which ξ is
g-Killing. An almost contact metric is called Sasakian if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X (13)

where ∇ is the Riemannian connection of g. A contact metric is K-contact if
and only if

Ric(X, ξ) = 2nη(X). (14)

In dimension 3, K-contact condition is equivalent to Sasakian condition.
An almost contact metric structure on M is said to be normal if the almost
complex structure J on M ×R defined by J (X, f d

dt ) =
(
ϕX − fξ, η(X) d

dt

)
is

integrable. For a 3-dimensional almost contact metric manifold, we have the
following formula (Olszak [10])

(∇Xϕ)Y = g(ϕ∇Xξ, Y )ξ − η(Y )ϕ∇Xξ. (15)

A 3-dimensional normal almost contact structure satisfies [10]

(∇Xϕ)Y = a(g(X,Y )ξ − η(Y )X) + b(g(ϕX, Y )ξ − η(Y )ϕX) (16)
∇Xξ = −aϕX + b(X − η(X)ξ) (17)

where a, b are smooth functions on M . Using Eq. (17) and that ϕ is anti
self-adjoint with respect to g, we find

(Lξg)(X,Y ) = 2b(g(X,Y ) − η(X)η(Y )).
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Next, Lie-differentiating the relation η(X) = g(X, ξ) along ξ and using the
foregoing equation gives Lξη = 0. Also, the use of Eqs. (16) and (17) shows
that Lξϕ = 0. From Eq. (17) we have (dη)(X,Y ) = −2ag(X,Y ). Taking
its Lie-derivative along ξ, noting that Lie-derivation commutes with exterior
derivation, and using the values of Lξg, Lξη and Lξϕ computed earlier, and
also that η(ϕX) = 0, we obtain (ξa+2ab)g(ϕX, Y ) = 0. As ϕ vanishes nowhere
on M , in view of the first equation in (10), it follows that

ξa = −2ab (18)

We note here that almost contact metric structure satisfying the condition
(16) is known as a trans-Sasakian structure (see Oubina [11]).
A cosymplectic manifold is a normal almost contact metric manifold such that
η and Φ (the 2-form defined by Φ(X,Y ) = g(X,ϕY )) are both closed. This
definition is equivalent to ∇ϕ = 0 on an almost contact metric manifold. See
[1].

Henceforth we will assume that (M, g) is a Lagrangian submanifold of
the nearly Kaehler 6-sphere.

2. Canonical Almost Contact Metric Structure on M

First, we state and prove the following lemma.

Lemma 1. A unit vector field ξ on a Lagrangian submanifold (M, g) of the
nearly Kaehler 6-sphere, induces a canonical almost contact metric structure
(ϕ, g, ξ) with structure tensor ϕ defined by ϕX = G(X,Jξ).

Proof. We begin with the hypothesis that ξ is a global unit vector field on
M with respect to the induced metric g on M , and define a 1-form η by
η(X) = g(X, ξ). We also note from Eq. (2) that, for X ∈ X(M), the vector
field G(X,Jξ) = −JG(X, ξ) is tangential to M , because we know from lemma
4.1 of [8] that G(X,Y ) is normal to M for all vector fields X,Y tangent to M ,
and hence JG(X,Y ) is tangent to M , as M is Lagrangian. Hence we define a
(1,1)-tensor ϕ on M by

ϕX = G(X,Jξ)

which shows, in view of properties (1) and (2), that ϕ(ξ) = 0. We also have
that

g(ϕX, Y ) = g (G(X,Jξ), Y ) = −g (G(Jξ,X), Y ) = g (X,G(Jξ, Y ))
= −g (X,G(Y, Jξ)) = −g(X,ϕY ).

Further, we have

ϕ2X = G(G(X,Jξ), Jξ) = −JG(G(X,Jξ), ξ)
= −JG(−JG(X, ξ), ξ) = −JG(ξ, JG(X, ξ)).



Vol. 65 (2014) Almost Contact Lagrangian Submanifolds of Nearly Kaehler 6-Sphere 147

Using Eq. (8) in the above equation shows that

ϕ2X = −X + η(X)ξ

for any X ∈ X(M). Furthermore,

g(ϕX,ϕY ) = g(G(X,Jξ), G(Y, Jξ)) = g(G(X, ξ), G(Y, ξ))
= g(X,Y ) − η(X)η(Y ).

�

Thus (ϕ, ξ, η, g) is an almost contact metric structure on M .

Definition 1. The structure (ϕ, ξ, η, g) defined by a unit vector field ξ, as de-
fined in the above Lemma, will be called a canonical almost contact metric
structure on M .

As M is Lagrangian, we can set ∇⊥
XJξ = JFX, where F is a (1,1)-tensor field

on M , and prove

Proposition 1. Let M be a Lagrangian submanifold of S6 with nearly Kaehler
structure (g, J) and ξ be a global unit vector field on M , with the canonically
induced almost contact metric structure (ϕ, g, ξ) on M . Then the structure is
Sasakian if and only if F = 0.

Proof. Using formulas (5), (7) and (9), we compute the covariant derivative of
ϕ as follows.

(∇Xϕ) (Y ) = ∇XG(Y, Jξ) − G(∇XY, Jξ)

= ∇XG(Y, Jξ) − σ(X,G(Y, Jξ)) − G(∇XY, Jξ)

= (∇̄XG)(Y, Jξ) + G(σ(X,Y ), Jξ) + G(Y,∇⊥
XJξ)

−G(Y,AJξX) − σ(X,G(Y, Jξ))
= g(X,Y )ξ − η(Y )X − JG(σ(X,Y ), ξ) − σ(X,G(Y, Jξ))

−G(Y,AJξX) + G(Y,∇⊥
XJξ)

= g(X,Y )ξ − η(Y )X − JG(σ(X,Y ), ξ) + σ(X,JG(Y, ξ))

−JG(Y, σ(X, ξ)) + G(Y,∇⊥
XJξ)

= g(X,Y )ξ − η(Y )X + G(Y,∇⊥
XJξ).

As per our setting ∇⊥
XJξ = JFX, the above equation becomes

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X + G(Y, JFX). (19)

If F = 0, then obviously the structure is Sasakian. Conversely, if the structure
is Sasakian, then (19) reduces to G(Y, JFX) = 0. Substituting ξ for Y , and
using (1) and (2) gives ϕFX = 0. Operating it by ϕ provides F = 0, because
η(FX) = g(FX, ξ) = g(JFX, Jξ) = g(∇⊥

XJξ, Jξ) = 0. This completes the
proof. �
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Thus the question arises as to whether we may be able to weaken the
condition on F for the canonical structure to reduce to Sasakian. In the next
section, we provide an answer assuming the canonical structure to be contact
metric.

3. Canonical Contact Metric Structure on M

Theorem 1. Let M be a Lagrangian submanifold of S6 with nearly Kaehler
structure (g, J) and ξ be a global unit vector field such that the canonically
induced almost contact metric structure (ϕ, g, ξ) is contact metric structure
on M . Then the structure is Sasakian if and only if F is divergence-free.

Proof. Substituting ξ for Y in (19) and using the property ϕξ = 0 gives
−ϕ∇Xξ = η(X)ξ − X + G(ξ, JFX). Using Eqs. (10) and (11) in this we
get

ϕ2hX = G(ξ, JFX). (20)

Operating it by ϕ and noting that ϕ3 = −ϕ [which follows from Eq. (10)], we
get −ϕhX = ϕG(ξ, JFX). As hϕ = −ϕh for a contact metric structure, using
the definition of the canonical metric structure: ϕX = G(X,Jξ), and also the
Eqs. (1), (2) and (8) we get

hϕX = G(G(ξ, JFX), Jξ) = −JG(G(ξ, JFX), ξ) = −JG(−JG(ξ, FX), ξ)
= −JG(ξ, JG(ξ, FX)) = −[g(ξ, FX)ξ − g(ξ, ξ)FX] = FX

where we used η(FX) = 0 which was shown in the proof of Proposition 1.
Thus we have

FX = hϕX. (21)

We take the divergence on both sides of this equation and use the well-known
formula (see Blair and Sharma [2]): (div.hϕ)(X) = Ric(ξ,X) − 2η(X) for a
contact metric, in order to obtain

(div.F )(X) = Ric(ξ,X) − 2η(X). (22)

Thus the vanishing of div.F implies Ric(ξ,X) = 2η(X). Hence, from Eq. (14)
we conclude that the contact metric structure is K-contact, and since the
dimension of M is 3, it is Sasakian. The converse is obvious. This completes
the proof. �

Remark 1. The right hand side of Eq. (21) is metrically equivalent to half of
the strain tensor (also known as the torsion tensor, see Chern and Hamilton
[4]) Lξg, i.e. (Lξg)(X,Y ) = 2g(hϕX, Y ) which follows from Eq. (11).

At this point, we present a generalization of a result of Vrancken stated in
the beginning of Section 1, by considering M as a contact metric submanifold
and proving the following result.
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Theorem 2. Suppose that the Lagrangian submanifold (M, g) of the nearly
Kaehler 6-sphere S6 (g, J) is a contact metric manifold. Then
(i) M is Sasakian if and only if its second fundamental form annihilates the

Reeb vector field ξ,
(ii) for Sasakian M , structure tensor ϕ is given by ϕX = G(X,Jξ),
(iii) if the Sasakian submanifold M is parallel along ξ, i.e. the second funda-

mental form σ is parallel along ξ, then it is the totally geodesic 3-sphere.

Remark 2. We recall from (p. 40 of [3]) that an isometrically embedded sub-
manifold M of a Riemannian manifold M̄ is called a parallel submanifold if the
second fundamental form σ is parallel with respect to the van der Waerden–
Bortolotti connection ∇̃ as defined by the Eq. (25). Part (iii) of the above
theorem considers weakening this parallelism of σ to parallelism along the
Reeb vector field ξ (i.e ∇̃ξσ = 0) of the Sasakian submanifold of the nearly
Kaehler S6, and shows that σ vanishes.

Proof of Theorem 2. Contracting the Gauss equation

g(R(X,Y )Z,W ) = g(X,W )g(Y,Z) − g(X,Z)g(Y,W )
−g(σ(X,Z), σ(Y,W )) + g(σ(X,W ), σ(Y,Z))

at X and W , with respect to a local orthonormal frame (ei), i = 1, 2, 3 on M ,
and using the minimality of M , we obtain

Ric(Y,Z) = 2g(Y,Z) −
∑

i

g(σ(ei, Y ), σ(ei, Z)). (23)

Substituting ξ for Y and Z in the above, and using the formula (12) yields the
relation

|h|2 =
∑

i

g(σ(ei, ξ), σ(ei, ξ)).

Now, for a 3-dimensional contact metric manifold we know (see p. 94 of [1])
that

(∇Xϕ)Y = g(X + hX, Y )ξ − η(Y )(X + hX)

If h = 0, then the above equation reduces to the Sasakian condition (13).
Conversely, if M is Sasakian, then comparing (13) with the above formula
and subsequently substituting Y = ξ gives hX = g(hX, ξ)ξ = g(X,hξ)ξ = 0,
because h is self-adjoint and annihilates ξ for a contact metric structure on
M . Hence the contact metric M is Sasakian if and only if h = 0. Thus we
conclude from the unnumbered equation following Eq. (23) whose right hand
side is the sum of the squared norms of σ(ei, ξ), that M is Sasakian, i.e. h = 0
if and only if σ(X, ξ) = 0. Notice that for a contact metric, h is self-adjoint.
This proves part (i).

For part (ii), we first note from Eq. (7) and our foregoing conclusion
σ(X, ξ) = 0 that AJξ = 0. Now let (g, φ, ξ) be the Sasakian structure on the
Lagrangian submanifold M and e be a local unit vector field. As φ is anti
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self-adjoint, g(φe, e) = −g(e, φe) and hence g(φe, e) = 0, i.e. φe ⊥ e. From
the last equation of (10), φe is also unit. Further, g(φe, ξ) = −g(e, φξ) = 0,
because φξ = 0. Hence φe ⊥ ξ. Thus, (e, φe, ξ) is a local orthonormal basis. It
is known (see [8]) that

G(e, φe) = −Jξ, G(φe, ξ) = −Je, G(ξ, e) = −Jφe.

Using the above equations, formulas (1), (6), and (11) with h = 0 for a Sasakian
metric, we obtain the relations

∇⊥
e Jξ = −Jφe + G(e, ξ) = 0, ∇⊥

φeJξ = −Jφ2e + G(φe, ξ) = 0, ∇⊥
ξ Jξ = 0

which show that ∇⊥
XJξ = 0, i.e. Jξ is parallel in the normal bundle. As shown

in Lemma 1, the (1,1)-tensor ϕ defined by ϕX = G(X,Jξ) defines an almost
contact metric structure (ϕ, ξ, η, g) on M . Using the results AJξ = 0 and
∇⊥

XJξ = 0 and the fact that M has a Sasakian structure (η, ξ, φ, g) we find

φe = −∇eξ = −∇eξ = ∇eJJξ =
(∇eJ

)
(Jξ) + J∇eJξ

= G(e, Jξ) = ϕe.

Similarly, we show that φ(φe) = ϕ(φe). As we already know φξ = ϕξ = 0, it
turns out that ϕ = φ, proving part (ii). �

Finally, for part (iii), we find from the Codazzi equation that

(∇̃Xσ)(Y,Z) = (∇̃Y σ)(X,Z) (24)

where ∇̃ is the van der Waerden–Bortolotti connection defined by

(∇̃Xσ)(Y,Z) = ∇⊥
Xσ(Y,Z) − σ(∇XY,Z) − σ(Y,∇XZ). (25)

Substituting Y = ξ in (24), using the hypothesis ∇̃ξσ = 0, definition (25) and
the result σ(X, ξ) = 0, we immediately obtain σ(∇Xξ, Z) = 0. But, as M is
Sasakian, ∇Xξ = −ϕX. Thus σ(ϕX,Z) = 0. As X is an arbitrary tangent
vector field on M , replacing X by ϕX in the foregoing equation, using the
first equation of (10) and part (i) of this theorem, we obtain σ = 0, completing
the proof.

4. Canonical Normal Almost Contact Metric Structure on M

Motivated by the condition: div.F = 0, assumed in Theorem 1, we suppose the
canonical almost contact metric structure on M to be normal, and imposing
div.F = 0, prove the following classification result.

Theorem 3. Let the canonical almost contact metric structure on the La-
grangian submanifold M of the nearly Kaehler 6-sphere be normal. If F is
divergence-free, then M is either Sasakian or Cosymplectic.

Proof. By hypothesis, the canonical structure is a normal contact metric struc-
ture, and hence from Eq. (19) we have that

∇Xξ = −ϕX + FX. (26)
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Comparing it with Eq. (17) gives

FX = (1 − a)ϕX + b(X − η(X)ξ). (27)

Differentiating (27) along an arbitrary vector field Y on M , we have

(∇Y F )X = −(Y a)ϕX + (1 − a)(∇Y ϕ)X + (Y b)[X − η(X)ξ]
−b((∇Y η)X)ξ − bη(X)∇Y ξ

Let (ei) (i = 1, 2, 3) be a local orthonormal frame on M . Substituting Y = ei in
the above equation, taking inner product with ei and summing over i = 1, 2, 3,
and using the hypothesis div.F = 0, we obtain

Xb − η(X)ξb − (ϕX)a = 2[a(1 − a) + b2]η(X). (28)

Substituting ξ for X immediately provides

a(1 − a) + b2 = 0. (29)

Hence (28) reduces to

Xb − (ϕX)a − (ξb)η(X) = 0. (30)

Only two cases can occur: either (i) b = 0 on M and hence from (29) a = 1
or 0, or (ii) b �= 0 on some open part U of M and hence a �= 0, a �= 1 on U . Let
us work on U and rule out case (ii). Differentiating Eq. (29) along an arbitrary
vector field X on U , and then substituting X = ξ and also using (18) gives

Xb =
2a − 1

2b
Xa, ξb = a(1 − 2a). (31)

Using the above two equations in (30) provides
2a − 1

2b
Xa − (ϕX)a + a(2a − 1)η(X) = 0.

As X is arbitrary, substituting ϕX for X, using the first equation of (10),
Eq. (18) and the property η(ϕX) = 0, we obtain

2a − 1
2b

(ϕX)a + Xa + 2abη(X) = 0. (32)

Eliminating (ϕX)a between the above two equations, and subsequently replac-
ing X with ϕX we get (ϕX)a = 0. Thus, (30) becomes db = (ξb)η. Applying d
on it and using Poincaré lemma: d2 = 0, we have d(ξb)∧η+(ξb)dη = 0. Operat-
ing both sides of the resulting equation on the pair (X,ϕX), where X is an arbi-
trary vector field ⊥ ξ on U , we obtain (ξb)(dη)(X,ϕX) = 0. This can be written
as (ξb)[g(∇Xξ, ϕX)− g(∇ϕXξ,X)] = 0. The use of Eq. (17) and first equation
of (10) in the preceding equation provides a(ξb)g(ϕX,ϕX) = 0. The use of the
last equation of (10) turns the preceding equation into a(ξb)g(X,X) = 0. As
a �= 0 on U and X is arbitrary, we obtain ξb = 0 on U . Hence db = 0, i.e. b is
constant on U . So, Eq. (31) implies (1 − 2a)Xa = 0. As a �= 1

2 anywhere on U ,
otherwise (29) would be violated, we conclude that a is constant on U . Finally,
appealing to Eq. (32) provides ab = 0 which contradicts the assumption for
case (ii). �
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Hence we conclude that a = 1, b = 0 in which case Eq. (16) reduces to
(13) and hence M is Sasakian, or a = b = 0 in which case (16) reduces to
∇ϕ = 0, i.e. as defined in the introduction, M is cosymplectic, completing the
proof.

5. Concluding Remark

For the canonical contact metric structure on the Lagrangian submanifold M of
the nearly Kaehler S6, we note that Eq. (26) holds. Also, Proposition 1 asserts
that F = 0 if and only if the canonical structure M is Sasakian. Thus the
tensor F measures the deviation of M from becoming Sasakian. More generally,
Theorem 1 tells us that the condition F = 0 for the canonical structure to be
Sasakian, can be weakened to div.F = 0, when the canonical almost contact
metric on M is a contact metric.
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