TWO SPECIAL CLASSES OF HAMILTONIAN GRAPH

M Alabdullatif Department of Mathematics, King Saud University, P. O. Box 2455, Riyadh 11451, SAUDI ARABIA. mosaadal@ksu.edu.sa

Abstract: We study two types of Hamiltonian graphs. We give a characterization to one type, and determine the minimum number of edges in the other type.

AMS Subj. Classification: 05C45

Key Words: Hamiltonian Graphs; Weak Hamiltonian Graphs; Strong Hamiltonian Graphs.

1 Definitions

The graphs we consider are undirected, and without multiple edges or loops. Unless otherwise stated, we follow the notation of [1]. A Hamiltonian cycle (respectively, path) in a graph is a spanning cycle (path). A graph is Hamiltonian if it contains a Hamiltonian cycle. A Hamiltonian graph is said to be weak if adding any new edge will not creat a new Hamiltonian cycle. That is, if P is a Hamiltonian path in a weak Hamiltonian graph then the initial and final vertices of P must be adjacent. A Hamiltonian graph G is said to be strong if for every edge e in G there exists a hamiltonian cycle which does not use e. That is, G is hamiltonian, and G - e is also hamiltonian for every e in G.

We shall characterize weak hamiltonian graphs and determine the minimum number of edges in a strong Hamiltonian graph.

Suppose G is a Hamiltonian graph on n vertices and let C be a Hamiltonian cycle. We define i-chords of C as follows: an edge uv of G is an i-chord of C if there exists a path on C, joining u and v, and of length i. Hence, an i-chord is also an (n-i)-chord. N(v) denotes the neighbourhood of a vertex v.

2 Weak Hamiltonian Graphs

We characterize weak Hamiltonian graphs. An obvious example of weak Hamiltonian graphs is C_n , when the number of edges is minimum. K_n is also considered as a weak hamiltonian graph in the defined sense; where the number of edges is maximum obviously. We look for other important weak Hamiltonian graphs in the middle. In this section, we assume that G is weak Hamiltonian. We need the following lemmas.

Lemma 1 If an i-chord is in E(G), then all of the i-chords are in E(G).

Proof. Consider the Hamiltonian cycle in figure 1 where the vertices $v_0, v_1, v_2, ..., v_{n-1}$ are arranged in a clockwise order. Assume without loss of generality that $v_0v_i \in E(G)$. If $v_1v_{i+1} \notin G$ then there is a Hamiltonian path joining v_1 and v_{i+1} . Namely, $v_1v_2...v_iv_0v_{n-1}v_{n-2}...v_{i+1}$, which is a contadiction. Hence $v_1v_{i+1} \in G$. Proof follows now inductively. \square

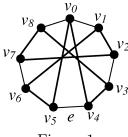


Figure 1

Lemma 2 If there is an i-chord ($i \ge 2$), then all of the 3-chords are present.

Proof. We show that there is a 3-chord, and then we use lemma 1 to deduce that all of the 3-chords are present.

If there is an *i*-chord $(i \geq 2)$, v_1v_{i+1} say. Then, by lemma 1 all of the *i*-chords are present. In particular v_2v_{i+2} . Therefore there is a Hamiltonian path joining v_0 and v_3 , namely $v_0v_{n-1}v_{n-2}...v_{i+2}v_2v_1v_{i+1}v_iv_{i-1}...v_3$ (see figure 2). Hence the 3-chord v_0v_3 must be there. \square

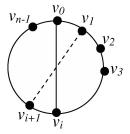


Figure 2

Lemma 3 If there is an i-chord ($i \ge 2$), then all of the (2k+1)-chords are present where $k \ge 1$.

Proof. By Induction on k. When k=1, by lemma 2 all of the 3-chords are there. Suppose G contains all (2l-1)-chords, in particular v_0v_{2l-1} . Then we may use v_1v_{2l} and $v_{n-1}v_{2l-2}$ to deduce that there is a Hamiltonian path joining v_0 and v_{2l+1} (see figure 3). Hence G contains v_0v_{2l+1} , and by lemma 1 all of the (2l+1)-chords are present. Hence all of the odd chords are in E(G). \square

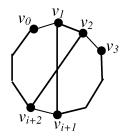


Figure 3

Proposition 4 If G is a weak Hamiltonian graph on n vertices, where n is even, then G is isomorphic to C_n or contains $K_{\frac{n}{2},\frac{n}{2}}$ as a subgraph.

Proof. If $G \ncong C_n$, then considering a Hamiltonian cycle C, there is an i-chord $(i \ge 2)$. Hence by lemma 3 all odd chords are present. This proves that $K_{\frac{n}{2},\frac{n}{2}}$ is contained in G. \square

We may use the following result which is due to Bondy, see [2].

Theorem 5 If G is Hamiltonian and $|E(G)| \ge (\frac{n}{2})^2$, then either $G \cong K_{\frac{n}{2},\frac{n}{2}}$ or G is pancyclic.

Corollary 6 If G is a weak Hamiltonian graph on n vertices, where n is even, then G is isomorphic to either C_n , K_n , or $K_{\frac{n}{2},\frac{n}{2}}$.

Proof. Suppose $G \ncong C_n$. Then by proposition 4, G contains $K_{\frac{n}{2},\frac{n}{2}}$ as a subgraph, and so $|E(G)| \ge (\frac{n}{2})^2$. Now by theorem 5 we have either $G \cong K_{\frac{n}{2},\frac{n}{2}}$ or G is pancyclic. If $G \ncong K_{\frac{n}{2},\frac{n}{2}}$, then G is pancyclic. Therefore, if we consider a hamiltonian cycle C, then all odd chords are present (lemma 3), and all even chords are present as well (as G is pancyclic and using lemma 1). Hence $G \cong K_n$. \square

Corollary 7 If G is a weak Hamiltonian graph on n vertices, where n is odd, then G is isomorphic to either C_n or K_n .

Proof. Suppose $G \ncong C_n$. then considering a Hamiltonian cycle C, there is an i-chord $(i \ge 2)$. Hence by lemma 3 all odd chords are present. But since an i-chord can be regarded as an (n-i)-chord, then even chords can be regarded as odd chords as well. This means that all even chords must be present too, and $G \cong K_n$. \square

Combining corollary 6 and corollary 7, we state our final result.

Proposition 8 If G is a weak Hamiltonian graph on n vertices, then G is isomorphic to either C_n , K_n , or $K_{\frac{n}{2},\frac{n}{2}}$.

3 Strong Hamiltonian Graphs

The obvious example here is K_n . Thus, strong Hamiltonian graphs of minimal size are to be sought. Suppose that $\zeta(n)$ is the minimum number of edges in a strong Hamiltonian graph with n vertices. Clearly, the minimum degree δ is at least 3. Hence, if we could construct a class of cubic graphs or nearly cubic (A graph is nearly cubic if each vertex is of degree 3 except one vertex that is of degree 4), then we may conclude that $\zeta(n)$ is $\frac{3n}{2}$ when n is even, and $\frac{3n+1}{2}$ when n is odd.

Proposition 9 If G is a strong Hamiltonian graph on n vertices, then $\varsigma(n) = \begin{cases} \frac{3n}{2} & \text{when n is even} \\ \frac{3n+1}{2} & \text{when n is odd} \end{cases}.$

Proof. As we have mentiond, it is clear that the minimum degree δ is at least 3, and enough to find a cubic graph when n is even and nearly cubic when n is odd. Assume n is even, and consider the Mobius laddar in figure 4 where the vertices are arranged in a clockwise direction around the hamiltonian cycle C and $N(v_i) = \{v_{i-1}, v_{i+1}, v_{i+\frac{n}{2}}\}$. The indices are to be taken modulo n-1.

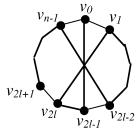


Figure 4

Using symmetry we may check upon deleting only two chords, a 1-chord (an edge of C) and an $\frac{n}{2}$ -chord. The latter is trivial as C does use only 1-chords. So assume e is a 1-chord, v_0v_1 without loss of generality. Then, $v_0v_{n-1}v_{n-2}...v_{\frac{n}{2}+1}v_1v_2v_3...v_{\frac{n}{2}}v_0$ is a Hamiltonian cycle that does not use e.

Suppose now that n is odd. Let G be the nearly cubic graph modified from Mobius laddar (see figure 5), where the obvious Hamiltonian cycle is shown, $N(v_0) = \{v_1, v_{n-1}, v_{\frac{n-1}{2}}, v_{\frac{n+1}{2}}\}$, and $N(v_i) = \{v_{i-1}, v_{i+1}, v_{i+\frac{n+1}{2}}\}$ $(i \neq 0)$. Indices are to be taken modulo n-1.

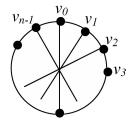


Figure 5

Once again, it is trivial to see that G-e is still Hamiltonian when e is an i-chord ($i \neq 1$). Therefore, we may inspect only 1-chords. Note that there are $\frac{n-1}{2}$ of what we call the $cross\ configuration$, that is two crossed $\frac{n-1}{2}$ -chords, Namely $\{v_{i-1}v_{i-1+\frac{n+1}{2}}, v_iv_{i+\frac{n-1}{2}}\}$, where $i \neq \frac{n+1}{2}$ (see figure 6).

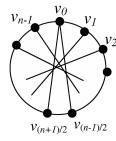


Figure 6

If $e=v_{i-1}v_i$ $(i\neq\frac{n+1}{2})$, then using a cross configuration, it is easy to spot a Hamiltonian cycle for G-e. Namely, $v_iv_{i+1}...v_{i-1+\frac{n+1}{2}}v_{i-1}v_{i-2}...v_{i+\frac{n+1}{2}}v_i$.

If $e = v_{\frac{n-1}{2}}v_{\frac{n+1}{2}}$, then taking all the *i*-chords $(i \neq 1)$ together with these $\frac{n-1}{2}$ 1-chords: $v_1v_2, v_3v_4, ..., v_{n-2}v_{n-1}$ gives us a Hamiltonian cycle for G - e. The case when n = 9 is shown in figure 7 where bold edges depict the Hamiltonian cycle.

This proves the result. \square

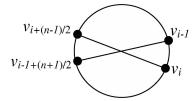


Figure 7

4 Conclusion

We have characterzied weak Hamiltonian graphs, and evaluated the minimum number of edges in a strong Hamiltonian graph.

References

- [1] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, Elsevier Science Publishing Co., Inc., 1976.
- [2] B. Bollabas. Extremal Graph Theory. Academic Press Inc., London, 1978.