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1 Definitions

The graphs we consider are undirected, and without multiple edges or loops.
Unless otherwise stated, we follow the notation of [1]. A Hamiltonian cycle
(respectively, path) in a graph is a spanning cycle (path). A graph is Hamil-
tonian if it contains a Hamiltonian cycle. A Hamiltonian graph is said to be
weak if adding any new edge will not creat a new Hamiltonian cycle. That
is, if P is a Hamiltonian path in a weak Hamiltonian graph then the initial
and final vertices of P must be adjacent. A Hamiltonian graph G is said to
be strong if for every edge e in GG there exists a hamiltonian cycle which does
not use e. That is, G is hamiltonian, and G — e is also hamiltonian for every
ein G.

We shall characterize weak hamiltonian graphs and determine the minimum
number of edges in a strong Hamiltonian graph.

Suppose G is a Hamiltonian graph on n vertices and let C' be a Hamiltonian
cycle. We define ¢ — chords of C' as follows: an edge uv of G is an ¢ — chord
of C' if there exists a path on C, joining v and v, and of length 7. Hence, an
i-chord is also an (n — 7)-chord. N(v) denotes the neighbourhood of a vertex
.



2 Weak Hamiltonian Graphs

We characterize weak Hamiltonian graphs. An obvious example of weak Hamil-
tonian graphs is C),, when the number of edges is minimum. K, is also consid-
ered as a weak hamiltonian graph in the defined sense; where the number of
edges is maximum obviously. We look for other important weak Hamiltonian
graphs in the middle. In this section, we assume that G is weak Hamiltonian.
We need the following lemmas.

Lemma 1 If an i-chord is in E(G), then all of the i-chords are in E(G).

Proof. Consider the Hamiltonian cycle in figure 1 where the vertices
Vg, V1, U2, ..., U,_1 are arranged in a clockwise order. Assume without loss of
generality that vov; € E(G). If v1v;01 ¢ G then there is a Hamiltonian path
joining vy and v; 1. Namely, v1vs...0;U9V; 1V, _2...0;41, Which is a contadiction.
Hence v1v;411 € G. Proof follows now inductively. [
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Lemma 2 If there is an i-chord (i> 2), then all of the 3-chords are present.

Proof. We show that there is a 3-chord, and then we use lemma 1 to
deduce that all of the 3-chords are present.

If there is an ¢-chord (i > 2), v1v;41 say.Then, by lemma 1 all of the i-chords
are present. In particular vov; 5. Therefore there is a Hamiltonian path joining
vo and v3, namely vVov,_1U,_2...0;12V2V10; 1 10;0;_1...U3 (see figure 2). Hence the
3-chord vyvs must be there. [J




Lemma 3 If there is an i-chord (i> 2), then all of the (2k + 1)-chords are
present where k > 1.

Proof. By Induction on k. When k = 1, by lemma 2 all of the 3-chords
are there. Suppose G contains all (2] — 1)-chords, in particular vgve_;. Then
we may use vivg and v, _1v9_o to deduce that there is a Hamiltonian path
joining vy and vy (see figure 3). Hence G contains vyvg 11, and by lemma 1
all of the (2] + 1)-chords are present. Hence all of the odd chords are in E(G).
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Proposition 4 If G is a weak Hamiltonian graph on n wvertices, where n
is even, then G is isomorphic to C, or contains Ku n as a subgraph.

Proof. It G 22 C),,, then considering a Hamiltonian cycle C, there is an
i-chord (i > 2). Hence by lemma 3 all odd chords are present. This proves
that Kz » is contained in G. U

We may use the following result which is due to Bondy, see [2].

Theorem 5 If G is Hamiltonian and |E(G)| > (%)?, then either G =
Kz » or G is pancyclic.

Corollary 6 If G is a weak Hamiltonian graph on n vertices, where n is
even, then G is isomorphic to either C,, Ky, or Ku .

Proof. Suppose G 2 C,. Then by proposition 4, G contains Kz » as a
subgraph, and so |E(G)| > (§)?. Now by theorem 5 we have either G = Kn »
or G is pancyclic. If G 2 K= », then G is pancyclic. Therefore, if we consider
a hamiltonian cycle C, then all odd chords are present (lemma 3), and all
even chords are present as well (as G is pancyclic and using lemma 1). Hence

G=K, U

Corollary 7 If G is a weak Hamiltonian graph on n wvertices, where n is
odd, then G is isomorphic to either C,, or K,.



Proof. Suppose G 22 C),. then considering a Hamiltonian cycle C| there is
an i-chord (7 > 2). Hence by lemma 3 all odd chords are present. But since an
i-chord can be regarded as an (n — i)-chord, then even chords can be regarded
as odd chords as well. This means that all even chords must be present too,
and G = K,,. O

Combining corollary 6 and corollary 7, we state our final result.

Proposition 8 If G is a weak Hamiltonian graph on n vertices, then G is
isomorphic to either Cp, Ky, or Kn n.

3 Strong Hamiltonian Graphs

The obvious example here is K,,. Thus, strong Hamiltonian graphs of minimal
size are to be sought. Suppose that ¢(n) is the minimum number of edges in
a strong Hamiltonian graph with n vertices. Clearly, the minimum degree ¢ is
at least 3. Hence, if we could construct a class of cubic graphs or nearly cubic
(A graph is nearly cubic if each vertex is of degree 3 except one vertex that is
of degree 4), then we may conclude that ¢(n) is 37” when n is even, and 3”2—+1
when n is odd.

Proposition 9 If G is a strong Hamiltonian graph on n vertices, then
37” when n s even
<(n) =

3”2—+1 when n is odd

Proof. As we have mentiond, it is clear that the minimum degree 0 is at
least 3, and enough to find a cubic graph when n is even and nearly cubic when
n is odd. Assume n is even, and consider the Mobius laddar in figure 4 where
the vertices are arranged in a clockwise direction around the hamiltonian cycle
C and N(v;) = {vi_1,vi11, UH%}. The indices are to be taken modulo n — 1.
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Using symmetry we may check upon deleting only two chords, a 1-chord

(an edge of (') and an §—chord. The latter is trivial as C' does use only

1-chords. So assume e is a 1-chord, vov; without loss of generality. Then,
VgUn—1Vp—2...02 4101 U2V3...U2 Vg is a Hamiltonian cycle that does not use e.



Suppose now that n is odd. Let G be the nearly cubic graph modified
from Mobius laddar (see figure 5), where the obvious Hamiltonian cycle is
shown, N(vg) = {v1,v,— 1, Un-a vn+1} and N(v;) = {vi_1,vi11, Z+n+1} (1 #0).
Indices are to be taken modulo n— 1.
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Once again, it is trivial to see that G — e is still Hamiltonian when e is an
z' chord (i # 1). Therefore, we may inspect only 1-chords. Note that there are
21 of what we call the cross configuration, that is two crossed —Chords
Namely {UZ,IUZ_H% v Z+nTl} where i # " (see figure 6).
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If e = v;_1v; (i # ™51), then using a cross configuration, it is easy to spot
a Hamiltonain cycle for G — e. Namely, v;v;1;...v,_ 1t Vi1 Vig. Uy ntd V.

Ife = UnaUng, then taking all the i-chords ( # 1) together with these "T_l
1—chords: vyvs, V304, ..., v, _2v,_1 gives us a Hamiltonian cycle for G — e. The
case when n = 9 is shown in figure 7 where bold edges depict the Hamiltonian
cycle.

This proves the result. [
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4 Conclusion

We have characterzied weak Hamiltonian graphs, and evaluated the minimum
number of edges in a strong Hamiltonian graph.
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