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1 De�nitions

The graphs we consider are undirected, and without multiple edges or loops.
Unless otherwise stated, we follow the notation of [1]. A Hamiltonian cycle
(respectively, path) in a graph is a spanning cycle (path). A graph is Hamil-
tonian if it contains a Hamiltonian cycle. A Hamiltonian graph is said to be
weak if adding any new edge will not creat a new Hamiltonian cycle. That
is, if P is a Hamiltonian path in a weak Hamiltonian graph then the initial
and �nal vertices of P must be adjacent. A Hamiltonian graph G is said to
be strong if for every edge e in G there exists a hamiltonian cycle which does
not use e. That is, G is hamiltonian, and G� e is also hamiltonian for every
e in G.
We shall characterize weak hamiltonian graphs and determine the minimum

number of edges in a strong Hamiltonian graph.
Suppose G is a Hamiltonian graph on n vertices and let C be a Hamiltonian

cycle. We de�ne i � chords of C as follows: an edge uv of G is an i � chord
of C if there exists a path on C, joining u and v, and of length i. Hence, an
i-chord is also an (n � i)-chord. N(v) denotes the neighbourhood of a vertex
v.



2 Weak Hamiltonian Graphs

We characterize weak Hamiltonian graphs. An obvious example of weak Hamil-
tonian graphs is Cn, when the number of edges is minimum. Kn is also consid-
ered as a weak hamiltonian graph in the de�ned sense; where the number of
edges is maximum obviously. We look for other important weak Hamiltonian
graphs in the middle. In this section, we assume that G is weak Hamiltonian.
We need the following lemmas.

Lemma 1 If an i-chord is in E(G), then all of the i-chords are in E(G).

Proof . Consider the Hamiltonian cycle in �gure 1 where the vertices
v0; v1; v2; :::; vn�1 are arranged in a clockwise order. Assume without loss of
generality that v0vi 2 E(G). If v1vi+1 =2 G then there is a Hamiltonian path
joining v1 and vi+1. Namely, v1v2:::viv0vn�1vn�2:::vi+1, which is a contadiction.
Hence v1vi+1 2 G. Proof follows now inductively. �

Figure 1

Lemma 2 If there is an i-chord (i� 2), then all of the 3-chords are present.

Proof . We show that there is a 3-chord, and then we use lemma 1 to
deduce that all of the 3-chords are present.
If there is an i-chord (i � 2), v1vi+1 say.Then, by lemma 1 all of the i-chords

are present. In particular v2vi+2. Therefore there is a Hamiltonian path joining
v0 and v3, namely v0vn�1vn�2:::vi+2v2v1vi+1vivi�1:::v3 (see �gure 2). Hence the
3-chord v0v3 must be there. �

Figure 2



Lemma 3 If there is an i-chord (i� 2), then all of the (2k+1)-chords are
present where k � 1.

Proof . By Induction on k. When k = 1, by lemma 2 all of the 3-chords
are there. Suppose G contains all (2l � 1)-chords, in particular v0v2l�1. Then
we may use v1v2l and vn�1v2l�2 to deduce that there is a Hamiltonian path
joining v0 and v2l+1 (see �gure 3). Hence G contains v0v2l+1, and by lemma 1
all of the (2l+1)-chords are present. Hence all of the odd chords are in E(G).
�

Figure 3

Proposition 4 If G is a weak Hamiltonian graph on n vertices, where n
is even, then G is isomorphic to Cn or contains Kn

2
;n
2
as a subgraph.

Proof . If G � Cn, then considering a Hamiltonian cycle C, there is an
i-chord (i � 2). Hence by lemma 3 all odd chords are present. This proves
that Kn

2
;n
2
is contained in G. �

We may use the following result which is due to Bondy, see [2].

Theorem 5 If G is Hamiltonian and jE(G)j � (n
2
)2, then either G �=

Kn
2
;n
2
or G is pancyclic.

Corollary 6 If G is a weak Hamiltonian graph on n vertices, where n is
even, then G is isomorphic to either Cn, Kn, or Kn

2
;n
2
.

Proof . Suppose G � Cn. Then by proposition 4, G contains Kn
2
;n
2
as a

subgraph, and so jE(G)j � (n
2
)2. Now by theorem 5 we have either G �= Kn

2
;n
2

or G is pancyclic. If G � Kn
2
;n
2
, then G is pancyclic. Therefore, if we consider

a hamiltonian cycle C, then all odd chords are present (lemma 3), and all
even chords are present as well (as G is pancyclic and using lemma 1). Hence
G �= Kn. �

Corollary 7 If G is a weak Hamiltonian graph on n vertices, where n is
odd, then G is isomorphic to either Cn or Kn.



Proof . Suppose G � Cn. then considering a Hamiltonian cycle C, there is
an i-chord (i � 2). Hence by lemma 3 all odd chords are present. But since an
i-chord can be regarded as an (n� i)-chord, then even chords can be regarded
as odd chords as well. This means that all even chords must be present too,
and G �= Kn. �
Combining corollary 6 and corollary 7, we state our �nal result.

Proposition 8 If G is a weak Hamiltonian graph on n vertices, then G is
isomorphic to either Cn, Kn, or Kn

2
;n
2
.

3 Strong Hamiltonian Graphs

The obvious example here is Kn. Thus, strong Hamiltonian graphs of minimal
size are to be sought. Suppose that &(n) is the minimum number of edges in
a strong Hamiltonian graph with n vertices. Clearly, the minimum degree � is
at least 3. Hence, if we could construct a class of cubic graphs or nearly cubic
(A graph is nearly cubic if each vertex is of degree 3 except one vertex that is
of degree 4), then we may conclude that &(n) is 3n

2
when n is even, and 3n+1

2

when n is odd.

Proposition 9 If G is a strong Hamiltonian graph on n vertices, then

&(n) =

�
3n
2

when n is even
3n+1
2

when n is odd
.

Proof . As we have mentiond, it is clear that the minimum degree � is at
least 3, and enough to �nd a cubic graph when n is even and nearly cubic when
n is odd. Assume n is even, and consider the Mobius laddar in �gure 4 where
the vertices are arranged in a clockwise direction around the hamiltonian cycle
C and N(vi) = fvi�1; vi+1; vi+n

2
g. The indices are to be taken modulo n� 1.
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Using symmetry we may check upon deleting only two chords, a 1-chord
(an edge of C) and an n

2
�chord. The latter is trivial as C does use only

1-chords. So assume e is a 1-chord, v0v1 without loss of generality. Then,
v0vn�1vn�2:::vn

2
+1v1v2v3:::vn

2
v0 is a Hamiltonian cycle that does not use e.



Suppose now that n is odd. Let G be the nearly cubic graph modi�ed
from Mobius laddar (see �gure 5), where the obvious Hamiltonian cycle is
shown, N(v0) = fv1; vn�1; vn�1

2
; vn+1

2
g, and N(vi) = fvi�1; vi+1; vi+n+1

2
g (i 6= 0).

Indices are to be taken modulo n� 1.

Figure 5

Once again, it is trivial to see that G� e is still Hamiltonian when e is an
i�chord (i 6= 1). Therefore, we may inspect only 1-chords. Note that there are
n�1
2
of what we call the cross configuration, that is two crossed n�1

2
�chords,

Namely fvi�1vi�1+n+1
2
; vivi+n�1

2
g, where i 6= n+1

2
(see �gure 6).

Figure 6

If e = vi�1vi (i 6= n+1
2
), then using a cross con�guration, it is easy to spot

a Hamiltonain cycle for G� e. Namely, vivi+1:::vi�1+n+1
2
vi�1vi�2:::vi+n+1

2
vi.

If e = vn�1
2
vn+1

2
, then taking all the i-chords (i 6= 1) together with these n�1

2

1�chords: v1v2; v3v4; :::; vn�2vn�1 gives us a Hamiltonian cycle for G� e. The
case when n = 9 is shown in �gure 7 where bold edges depict the Hamiltonian
cycle.
This proves the result. �

Figure 7



4 Conclusion

We have characterzied weak Hamiltonian graphs, and evaluated the minimum
number of edges in a strong Hamiltonian graph.
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