

 Generate information to be transmitted,

Compare transmitted and received information and
Update error counters accordingly.

LDPC Encoder LDPC Decoder

Information to be
transmitted

BPSK modulator

AWGN channel

BPSK demodulator
(Soft decision)

Received
information

Figure 1 Block diagram of a conventional LDPC
performance evaluation simulator.

PARALLEL COMPUTING PLATFORM FOR
EVALUATING LDPC CODES PERFORMANCE

 Esa Alghonaim, Aiman El-Maleh and Adnan Al-Andalusi

 King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

ABSTRACT
This paper presents a novel approach for the design and
implementation of a simulation platform for evaluating
LDPC codes performance. The existing LDPC code
simulation tools consume very long time in evaluating
the performance of a specific code design. This is due to
the intensive number of required computations. This
problem is overcome by developing a parallel protocol to
distribute the computations among processing nodes in a
TCP/IP network. As indicated by experimental results,
the proposed simulation platform is scalable with the
number of processing nodes. Another practical
advantage of the proposed system is that it does not need
dedicated processors to run it; rather, it can utilize idle
times of processing nodes in a network and work
transparent to a node user. Furthermore, network
daemons are used to utilize network nodes even if they
are in the log-off state.

Index Terms— LDPC codes, parallel processing,
simulation, iterative decoder, SPA.

1. INTRODUCTION

Forward Error Correcting (FEC) codes are an essential
component of modern state-of-the-art digital
communication and storage systems. Indeed, in many of
the recently developed standards, FEC codes play a
crucial role for improving the error performance
capability of digital transmission over noisy interference-
impaired communication channels.
The leading family of FEC codes are widely considered
to be Low Density Parity Check codes (LDPCs) [1], as
they demonstrate performance very close to the
information-theoretic bounds predicted by Shannon
theory, while at the same time having the distinct
advantage of low-complexity, near-optimal iterative
decoding. Unfortunately, there is as yet no theory for
evaluating the performance of a given LDPC code.
Currently, the only way to evaluate LDPC codes
performance is through simulation. The problem of using
simulation is the long time needed, especially for large
codes.
In this paper, we introduce a parallel simulation platform
to aid LDPC code designers to evaluate the performance
of different designs of LDPC codes. The tool can also be
used during the LDPC code design phase. As an

example, one may generate 1000 random LDPC codes
(with some constraint, such as cycling structure) and then
evaluate the performance of each code to determine the
code with the best performance.
The remainder of this paper is organized as follows: In
Section 2, conventional LDPC code simulator is
introduced. In Section 3, we give a brief review of the
sum-product algorithm. In Section 4, the proposed
simulation platform is presented. Experimental results are
given in Section 5. Section 6 concludes the paper.

2. LDPC CODE PERFORMANCE SIMULATION

The block diagram of LDPC simulation over an AWGN
(additive White Gaussian Noise) channel is shown in
Figure 1. The path of one simulation iteration is
illustrated, which involves the following steps:
generating an information block, encoding it, sending it
through an AWGN channel, decoding the received block,
comparing it with the original transmitted information
and finally updating simulation statistical counters.
Statistical counters mainly include: total transmitted
blocks, number of blocks in error and total bits in error.

First, K random information bits are generated and then
encoded into an LDPC block of length N. Each bit

{0,1}ic ∈ in the code block is modulated into a BPSK (Binary
Phase Shift Keying) symbol ix = { -s , +s} based on the
value of ic , where s is the BPSK signal strength. The signal

ix is then passed to an AWGN channel which adds noise
to it to produce the received signal iy as follows:

i i iy x n= + , where in is the AWGN additive value. Note
that instead of generating a random information block
and encoding it into a block code, it is enough to generate
an all zeros block code (0ic = , 0 i N≤ ≤). In this case,
the encoding step is not needed and the simulation
process will be faster. The last step is comparing the
decoded received information with the originally
transmitted information and then updating the simulation
statistical counters accordingly.
To conclude this section, we give a review for the
modeling of BPSK signal transmission over an AWGN
channel. Assume {0,1}ic ∈ is the bit to be transmitted,
then, the transmitted BPSK signal ix corresponding to ic
is given by:

1
0

i
i

i

s if c
x

s if c
− =⎧

= ⎨+ =⎩

(1)

The signal strength s depends on the code rate (R) and
the signal to noise ratio (0/bE N) and is given by:

()02 /bs R E N= × × (2)

The reason for including the LDPC code rate R (which is
given by K/N) in equation (2) is to make a fair
comparison between different codes of different rates.
This is because at lower LDPC code rates, the receiver
will be allowed to accumulate the channel output for a
longer time and thus the amount of noise (relative to
signal) will decrease as a result of averaging [5].

3. THE SUM-PRODUCT ALGORITHM
LDPC codes are a class of linear block codes that use a
sparse, random-like parity-check matrix [1]. LDPC codes
can also be represented by bi-partite factor graphs having
two types of nodes: variable bit nodes and check nodes,
interconnected by edges whenever a given information
bit appears in the parity check equation of the
corresponding check bit. The iterative sum-product
algorithm (SPA) can be used for decoding LDPC codes,
and is shown to achieve optimum performance when the
underlying code graph is cycle-free In the following, a
brief description of this algorithm is given based on the
notation in [4]. The SPA algorithm is also called Belief
Propagation (BP) algorithm.
Assume a binary (N,K) LDPC code is described by a
sparse parity check matrix of size M N× , where M is
the number of parity-checks corresponding to the parity-
check nodes in a bipartite graph, and N is the number of
variable nodes corresponding to the encoded symbols.

Before discussing the SPA algorithm, we introduce some
terms that will be used throughout the discussion of the
SPA algorithm [4]:
• For the thj row in an H matrix, the set of column

locations of the 1’s is given by { : 1}j jiR i h= = . The

set of column locations of the 1’s, excluding location
i is given by \ { : 1}j i jiR i h ′′= = \ {i}.

• For the thi column in an H matrix, the set of row
locations of the 1’s is given by { : 1}i jic j h= = . The
set of row locations of the 1’s, excluding the location
j is given by \ { : 1}i j j ic j h ′′= = \ {j}

• ()ijq b : Message (extrinsic information) to be passed

from variable node iv to check node jf regarding

the probability that ic b= , {0,1}b∈ , as shown in
Figure 2(a). It equals the probability that ic b= given
extrinsic information from all check nodes, except
node jf .

• ()jir b : Message to be passed from check node jf to

variable node iv , which is the probability that the
thj check equation is satisfied given bit ic b= and

the other bits have separable (independent)
distribution given by { }ij j jq ′ ′≠ , as shown in Figure

2(b).
• ()iQ b = the probability that ic b= , {0,1}b∈

• Pr(1 |) Pr(0 |)
() log log

Pr(1 |) Pr(1 |)
i i i i

i
i i i i

x y c y
L c

x y c y
= + =

≡ =
= − =

•
(0)

() log
(1)

ji
ji

ji

r
L r

r
≡ and

(0)
() log

(1)
ij

ij
ij

q
L q

q
≡

• (0)
() log

(1)
i

i
i

Q
L Q

Q
≡

The SPA algorithm involves one initialization step and
three iterative steps as shown below:
Initialization step: Set the initial value of each variable
node signal as follows: 2() () 2 /ij i iL q L c y σ≡ = , where

2σ is the variance of noise in the AWGN channel.
Iterative steps: The three iterative steps are as follows:

jf

iv

()ijq b

Figure 2 (a) Variable-to-check message, (b) Check-to-
variable message.

iv

()jir b
jf

(a) (b)

(I) Update check nodes as follows:

\\

() ()
j ij i

ji i j i j
i Ri R

L r α φ φ β′ ′
′′ ∈∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ×
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑∏

(3)

Where (())i j ijsign L qα ′ = , ()ij ijL qβ =

1() log(tanh(/ 2)) log
1

x

x
ex x
e

φ +
= − =

−

(II) Update variable nodes as follows:

\

() () ()
i j

ij i j i
j C

L q L c L r ′
′∈

= + ∑ (4)

 (III) Compute estimated variable nodes as follows:
() () ()

i

i i ji
j C

L Q L c L r
∈

= + ∑ (5)

Based on ()iL Q , the estimated value of the received bit
(îc) is given by:

1 () 0
ˆ

0
i

i
if L Q

c
else

<⎧
= ⎨
⎩

During LDPC decoding, the iterative steps I to III are
repeated until the following event occurs: ˆ 0Tc H⋅ = OR
maximum iterations is reached.

4. THE PROPOSED PARALLEL SIMULATION
The proposed parallel simulation platform consists of

two main components: (1) Simulation controller, and (2)
Processing nodes, as shown in Figure 3. The task of
simulation controller is to control the operation of
processing nodes. Simulation controller sends simulation
parameters to processing nodes, instruct them to start
simulation and collect statistical results from them. In the
other hand, processing nodes receive simulation requests
and parameters from simulation controller, perform the
LDPC simulation (as in figure 1) and send simulation
results to simulation controller upon receiving a request
from it.

Before discussing each of the two components in
details, we give a quick view for the proposed LDPC
simulation platform. First, a user sets simulation
parameters (H-matrix, SNR point, decoding iterations …)
and then starts the simulation. Upon starting, simulation
controller communicates with each processing node and
sends simulation parameters to it. When a processing
node receives simulation parameters, it starts LDPC code
simulation independent of other processing nodes.
Simulation controller periodically sends a results request
message for each processing node. When a processing
node receives a results request message, it sends its
pending results to simulation controller and then
initializes simulation counters.

4.1. Simulation Controller
Simulation controller is the central part in the proposed
parallel simulation platform. It controls the operation of

processing nodes. Simulation controller builds a look-up
table, one entry for each reachable processing element. A
processing node entry is used to keep track of its current
state, such as: node address, statistical counters, H-matrix
signature, decoding algorithm version, etc.
The simulation controller algorithm is divided into three
stages:
Stage 1: Locating processing nodes: In this phase,
simulation controller sends a start simulation request

message to all connected processing nodes. Each active
processing node responds by sending an
acknowledgement to simulation controller indicating its
address and its decoding algorithm version number.
When simulation controller receives an
acknowledgement from a processing node, it performs
two tasks: (1) Adding a new record to the look-up table
to keep track of the processing node, (2) Checking the
version of the processing node decoding algorithm. If it
is not up to date, simulation controller sends a new
version to the processing node using File Transfer
Protocol (FTP). At the end of this stage, simulation
controller has a look-up table for all active and up to date
processing nodes.
Stage 2: Sending simulation parameters: In this phase,
simulation controller sends LDPC simulation parameters
to each processing node in its look-up table. The
simulation parameters include: H-matrix, SNR value,
maximum LDPC decoding iterations, decoding algorithm
type (floating point or fixed point), etc. When a
processing node receives simulation parameters, it
immediately starts simulation.
 Stage 3: Partial results collection: In this phase,
simulation controller periodically sends results request
messages to processing nodes. A processing element
responds to this message by sending its results to
simulation controller and then initializing its statistical
counters. Upon receiving results message from a
processing node, simulation controller updates its
aggregate statistical counters. Simulation controller
periodically collects partial results from all processing
nodes (n) in a time period of T seconds. This means that
each t = T/n seconds, simulation controller sends a results
request message to a processing node, as shown in Figure
4. Simulation controller continues on this phase until the

Simulation
Controller

1PN 2PN
nPN

Figure 3. Components of the proposed parallel LDPC
simulation platform.

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

Number of processing nodes

S
im

ul
at

io
n

tim
e

(h
ou

rs
)

desired number of simulated blocks is reached. Then, it
sends stop simulation messages to all processing nodes.

4.2. Processing Nodes
The function of processing nodes is to run LDPC

performance simulation and send results to simulation
controller. Initially, a processing node receives
simulation request from simulation controller, performs
simulation and then sends results to simulation controller
upon receiving a results request message from simulation
controller. The protocol of a processing node is as
follows:
1. Wait until a start simulation request message is

received from simulation controller.
2. Receive simulation parameters (H-matrix, value of

SNR, maximum decoding iterations,…) from
simulation controller.

3. Initialize statistical counters.
4. Perform transmission and decoding simulation for one

block and update simulation counters accordingly.
5. If a results request message is received from

simulation controller, then go to step 7, otherwise go to
step-4.

6. If a stop simulation message is received from
simulation controller, then go to step 1.

7. Send pending statistical counters to simulation
controller, then go to step 3.

5. EXPERIMENTAL RESULTS

Our college network is used to implement the
proposed parallel simulation platform with a maximum of
126 processing nodes. The messages between simulation
controller and processing nodes have been implemented
using TCP/IP and UDP/IP. Indy 8.0 under Delphi 6 is
used to run these network protocols.
The performance of the proposed simulation platform is
evaluated by running it on an LDPC code of size
1024bits, ½ rate, at SNR = 2.5dB, 128 decoding
iterations and 10,000,000 transmitted blocks. Figure 5
indicates simulation time as a function of the number of
processing nodes. We vary processing nodes from 2
nodes up to 126 nodes, each time we almost double
number of processing nodes.
 Results indicate that simulation time decreases
almost linearly as number of processing nodes increases.
By doubling the number of processing nodes, simulation
time becomes about half. Simulation time decrease is not
exactly linear because of the following two reasons: (1)
different network nodes have different processing
capabilities, (2) CPU time of network nodes is divided
between network users (in our case, students working in
labs) and simulation nodes (which have lower priority).

6. CONCLUSION

In this work, we have proposed a parallel computing
simulation platform for efficiently evaluation LDPC code
performance. It achieves almost linear speed-up as a
function of the number of processing elements used.
Simulation time for evaluating the performance of 1024
bits LDPC code at SNR=2.5 and 10,000,000 blocks is
reduced from 14.5 hours using a single node to only 6
minutes using 126 network nodes. The proposed
simulation platform is cost effective as it does not need a
dedicated network and is based on using existing
networks, such as college networks. Simulation processes
running in network nodes are transparent from network
users and they are assigned low priorities so they do not
affect performance of a network user’s jobs. The
proposed platform can be efficiently used in development
of LDPC codes with high performance.

ACKNOWLEDGMENT

The authors thank King Fahd University of
Petroleum & Minerals for support of this work under
project no. EE/DENSITY/387.

REFERENCES
[1] R. G. Gallager, “Low Density Parity-Check Codes”. MIT
Press, Cambridge, MA, 1963.
[2] Dong-U Lee , “Reconfigurable Hardware for Function
Evaluation and LDPC Coding ", PhD Thesis - Department of
Computing Imperial College London United Kingdom
dong.lee@ic.ac.uk, July 2003
[3] Frederic GUILLOUD , “Generic Architecture for LDPC
codes decoding", PhD Thesis – July 2004.
[4] William Ryan, “A Low-Density Parity-Check Code
Tutorial, Part II - The Iterative Decoder”, ECE dept. The
University of Arizona, April 2002.
[5] Radford Neal , Software for Low Density Parity Check
codes, www.cs.utoronto.ca/~radford/ldpc.software.html
[6] S.-Y. Chung, J. G. D. Forney, T. Richardson, and R.
Urbanke, “On the design of low-density parity-check codes
within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett.,
vol. 5, pp. 58–60, Feb. 2001.

t 2t n× t (1+n)× t 0

1PN 2PN 1PN nPN

Figure 4 Simulation results request distribution over time.

time

Figure 5 Simulation time vs. number of processing nodes.

