Prob-Chap06-PHYS-109

6.1. If the torque required to loosen a nut has a magnitude of $t=40 \mathrm{Nm}$, what minimum force must be exerted at the end of a $30-\mathrm{cm}$-long wrench?
6.3. A steel band of a brace exerts an external force of magnitude $\mathrm{F}_{\text {ext }}=40 \mathrm{~N}$ on a tooth. The tooth is shown in Fig. 6.53, with point B a distance 1.33 cm above point A , which is the fulcrum. The angle between the normal to the tooth and the external force is $\theta=40^{\circ}$. What is the torque on the root of the tooth about point A ?

Figure 6.53 A horizontal force $\vec{F}_{\text {ext }}$ acts at point B on a tooth with the fulcrum at point A.
6. 6. A force of 120 N in positive x -direction is applied perpendicularly to the middle of a $3-\mathrm{m}$-long stick standing vertically. What is the magnitude and direction of torque about each end of the stick?
6.23. Determine the torque about the knee by a hamstring tendon exerting an 80 N force on bones in the lower leg, as shown in Fig. 6.69. Assume that the knee bend is 75°, and that the tendon acts horizontally 6.0 cm below the knee, the pivot point.

Figure 6.69
6.26. A 10 kg object rotating on a circle of 2.5 m has an angular momentum of $0.75 \mathrm{~kg} \mathrm{~m} 2 / \mathrm{s}$ with respect to the centre of the circle. What is its speed?
6.27. Two objects of masses $\mathrm{ml}=157.6 \mathrm{~kg}$ and $\mathrm{m} 2=54.5 \mathrm{~kg}$, with speeds of $\mathrm{v} 1=53.6 \mathrm{~m} / \mathrm{s}$ and $\mathrm{v} 2=55.2 \mathrm{~m} / \mathrm{s}$, are moving in a perpendicular direction around the origin O , as shown in Fig 6.71. If at one moment their distance from the origin O is $\mathrm{r} 1=52.5 \mathrm{~m}$ and $\mathrm{r} 2=53.8 \mathrm{~m}$, what is their total (net) angular momentum about point O ?

Figure 6.71

