Chapter 25

Electric Potential

Electrical Potential Energy

- When a test charge is placed in an electric field, it experiences a force - $\mathbf{F}=q_{0} \mathbf{E}$
- The force is conservative
- ds is an infinitesimal displacement vector that is oriented tangent to a path through space

Electric Potential Energy, cont

- The work done by the electric field is $\mathbf{F} \cdot d \mathbf{s}=q_{0} \mathbf{E} \cdot d \mathbf{s}$
- As this work is done by the field, the potential energy of the charge-field system is changed by $\Delta U=-q_{0} \mathrm{E} \cdot d$ s
- For a finite displacement of the charge from A to B,

$$
\Delta U=U_{B}-U_{A}=-q_{0} \int_{A}^{B} \mathbf{E} \cdot d \mathbf{s}
$$

Electric Potential Energy, final

- Because $q_{0} E$ is conservative, the line integral does not depend on the path taken by the charge
- This is the change in potential energy of the system

Electric Potential

- The potential energy per unit charge, U / q_{0}, is the electric potential
- The potential is independent of the value of q_{0}
- The potential has a value at every point in an electric field
- The electric potential is $V=\frac{U}{q_{0}}$

Electric Potential, cont.

- The potential is a scalar quantity
- Since energy is a scalar
- As a charged particle moves in an electric field, it will experience a change in potential

$$
\Delta V=\frac{\Delta U}{q_{0}}=-\int_{A}^{B} E \cdot d \mathbf{s}
$$

Electric Potential, final

- The difference in potential is the meaningful quantity
- We often take the value of the potential to be zero at some convenient point in the field
- Electric potential is a scalar characteristic of an electric field, independent of any charges that may be placed in the field

Work and Electric Potential

- Assume a charge moves in an electric field without any change in its kinetic energy
- The work performed on the charge is

$$
W=\Delta V=q \Delta V
$$

Units

- $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$
- V is a volt
- It takes one joule of work to move a 1 coulomb charge through a potential difference of 1 volt
- In addition, $1 \mathrm{~N} / \mathrm{C}=1 \mathrm{~V} / \mathrm{m}$
- This indicates we can interpret the electric field as a measure of the rate of change with position of the electric potential

Electron-Volts

- Another unit of energy that is commonly used in atomic and nuclear physics is the electronvolt
- One electron-volt is defined as the energy a charge-field system gains or loses when a charge of magnitude e (an electron or a proton) is moved through a potential difference of 1 volt
- $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Potential Difference in a Uniform Field

- The equations for electric potential can be simplified if the electric field is uniform:

$$
V_{B}-V_{A}=\Delta V=-\int_{A}^{B} \mathbf{E} \cdot d \mathbf{s}=-E \int_{A}^{B} d \mathbf{s}=-E d
$$

- The negative sign indicates that the electric potential at point B is lower than at point A

Energy and the Direction of Electric Field

- When the electric field is directed downward, point B is at a lower potential than point A
- When a positive test charge moves from A to B, the charge-field system loses potential energy

More About Directions

- A system consisting of a positive charge and an electric field loses electric potential energy when the charge moves in the direction of the field
- An electric field does work on a positive charge when the charge moves in the direction of the electric field
- The charged particle gains kinetic energy equal to the potential energy lost by the charge-field system
- Another example of Conservation of Energy

Directions, cont.

- If q_{0} is negative, then ΔU is positive
- A system consisting of a negative charge and an electric field gains potential energy when the charge moves in the direction of the field
- In order for a negative charge to move in the direction of the field, an external agent must do positive work on the charge

Equipotentials

- Point B is at a lower potential than point A
- Points A and C are at the same potential
- The name equipotential surface is given to any surface consisting of a continuous distribution of points having the same electric potential

Charged Particle in a Uniform Field, Example

- A positive charge is released from rest and moves in the direction of the electric field
- The change in potential is negative
- The change in potential energy is negative
- The force and acceleration are in the direction of the field

Potential and Point Charges

- A positive point charge produces a field directed radially outward
- The potential difference between points A and B will be

$$
V_{B}-V_{A}=k_{e} q\left[\frac{1}{r_{B}}-\frac{1}{r_{A}}\right]
$$

Potential and Point Charges, cont.

- The electric potential is independent of the path between points A and B
- It is customary to choose a reference potential of $V=0$ at $r_{\mathrm{A}}=\infty$
- Then the potential at some point r is

$$
V=k_{e} \frac{q}{r}
$$

Electric Potential of a Point Charge

- The electric potential in the plane around a single point charge is shown
- The red line shows the $1 / r$ nature of the potential

Electric Potential with Multiple Charges

- The electric potential due to several point charges is the sum of the potentials due to each individual charge
- This is another example of the superposition principle
- The sum is the algebraic sum

$$
\begin{aligned}
& V=k_{e} \sum_{i} \frac{q_{i}}{r_{i}} \\
& V=0 \text { at } r=\infty
\end{aligned}
$$

Electric Potential of a Dipole

- The graph shows the potential (y-axis) of an electric dipole
- The steep slope between the charges represents the strong electric field in this region

Potential Energy of Multiple Charges

- Consider two charged particles
- The potential energy of the system is

$$
\begin{equation*}
U=k_{e} \frac{q_{1} q_{2}}{r_{12}} \tag{1}
\end{equation*}
$$

(a)

Active Figure 25.10

(SLIDESHOW MODE ONLY)

More About U of Multiple Charges

- If the two charges are the same sign, U is positive and work must be done to bring the charges together
- If the two charges have opposite signs, U is negative and work is done to keep the charges apart

U with Multiple Charges, final

- If there are more than two charges, then find U for each pair of charges and add them
- For three charges:
$U=k_{e}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)$

- The result is independent of the order of the charges

