• Objectives

• Planning The Sampling Program
 • Factors that influence planning
 • Sampling methods

• Preparing The Well for Sampling
 • Reservoir fluid type consideration and well operation conditions
 • Duration of the well conditioning period
 • Field measurements during well conditioning

• Conducting The Sampling Operation
 • Subsurface sampling
 • Surface sampling

• PVT Laboratory Tests
Objectives

Obtain a sample of the original reservoir fluid by collecting samples before the bottom hole flowing pressure has dropped below reservoir fluid saturation pressure. This fluid will be representative of the original reservoir fluid
Planning The Sampling Program

Factors that influence planning

• Types of reservoir fluids
• Effect of reservoir fluid type on planning
• The production characteristics of each well
 • No water production (even small amount)
 • Gas oil ratio and tank oil gravity
 • Relatively high productivity index

Avoid sampling from an oil well

• Near GOC
• Near OWC
• Oil water transition zone
Planning The Sampling Program

The choice of sampling method influenced by

- Volume of sample
- Type of reservoir fluid
- The degree of depletion of the reservoir
- The mechanical condition of the wellbore
- The type of available gas oil separation equipment.

Sampling methods:

- Subsurface sampling
- Surface sampling
- Wellhead sampling
Planning The Sampling Program

Subsurface sampling

• **Bottom-hole samplers:**
 Tool to collect sample from the well-bore that can be used in either open-hole or cased-hole wells and can be run in tubing.

• **Formation testers**
 Modern open-hole wireline sampler that can collect fluid samples directly from the formation.
Planning The Sampling Program

Subsurface sampling
Planning The Sampling Program

Surface sampling
Taking samples from separator of oil and gas.
Wellhead sampling
Less common but potentially valuable.
If the fluid is in the single-phase state at the wellhead condition of temperature and pressure, this technique can produce the easiest and more reliable results.
Planning The Sampling Program

Advantages of subsurface sampling

• Collects the desired sample directly.
• Can maintain full pressure on sample (with special sampling tool).
• Avoids use of surface separators, and the proper sizing of separators.
• Avoids the need for flow rate metering devices, and their proper sizing and calibration (for determination of producing GOR).
• Requires less sampling information to be transmitted to testing laboratory.
• Eliminates potential errors in recombination of gas and oil samples required for surface samples.
Planning The Sampling Program

Advantages of surface sampling

- Relatively easy, convenient and less expensive compared to subsurface sampling (e.g., no rig or wireline unit is required on location).
- Avoids loss of production during required shut-in period for subsurface sampling (period of 1 – 4 days, or more for low deliverability wells).
- Avoids the potential for getting the subsurface sampling tool stuck or lost if the tubing is damaged or deviated, or if the sampling tool is lowered below tubing level.
- Applicable to cases where water is expected in tubing at the depth of the producing formation, where subsurface sampling cannot be used.
- Does not require that single-phase fluid be produced into the wellbore.
Advantages of formation testers

• Same advantages as subsurface sampling above.
• Collects the desired sample directly from the formation.
• Sample represents reservoir fluid over a very narrow depth interval.
• Sample not affected by fluid segregation in the wellbore.
• Can sample reservoir fluid even if water is standing in wellbore.
• Can sample reservoir fluid at original conditions (before any reservoir fluid has been produced).
• Controlled pressure draw-down during sample collection.
Preparing The Well for Sampling

Considerations of reservoir fluid type and well operating conditions

- Understanding of the type of fluid.
- The current status of the production operation.
- The production history of the well.
- All chemical injections which may affect the sample quality should be stopped prior to sampling or minimized.
Preparation of the Well for Sampling

Conditioning the Well before Sampling

- The well is produced long enough to clean up all chemicals that used during the well completion
- The flow rate is stepwise decreased until the \(p_{wf} > \) the estimated saturation pressure (if possible)
- The final rate must be large enough to maintain a stable producing GOR and wellhead pressure.
- The final rate should be maintained long enough to ensure that the producing GOR is constant
Preparing The Well for Sampling

Flowing oil wells
Making accurate measurements of the oil and gas rates and measuring the bottom-hole pressure for the last 24 hours of normal production rate.

Pumping oil wells
Generally, they are undesirable for sampling unless it is the only available option.
If the surface sampling method is used, the well should be pumped for several days after steady oil and gas rates achieved.
If the subsurface sampling is used, pumping is stopped after the well is conditioned and the rods and pump (or ESP) are pulled out of the tubing.
Preparing The Well for Sampling

Duration of the well conditioning period
The period depends on:
• The volume of reservoir fluid that has been altered.
• Contamination by drilling fluid.
 • Producing the well at $p_{wf} < p_b$
 • The rates at which the altered reservoir oil is produced.
Preparing The Well for Sampling

Field measurements during well conditioning

• Tubing (wellhead) pressure and temperature
• Gas rate
 • Gas gravity
 • Gas temperature
• Oil rate
 • Primary separator rate
 • Stock tank oil production rate
• Water production rate
• Separator pressure
• Separation temperature
Subsurface sampling
The well should be cleaned up of drilling and completion fluids. The sampling process must be preceded by the selection of:
- The type of subsurface sampling tool.
- The appropriate sampling point in the wellbore.

Sampling tools
- Conventional bottom-hole samplers
- Piston-type bottom-hole samplers
- Formation testers
Subsurface sampling
Selecting the sampling point
The best place is the lowest point in the wellbore passed by all the fluid entering the wellbore and when the static pressure is not less than the estimated reservoir fluid saturation pressure and avoiding water producing zones. The pressure survey data will be used to determine the GWC or OWC depths.
Conducting The Sampling Operation

Surface sampling
- It is satisfactory for nearly all types of reservoir fluids.
- The producing rate should not be changed after the well has been conditioned.
Conducting The Sampling Operation

1. Choose Location
2. Position sampling device and remove contaminants
3. Take sample and minimize contaminants
4. Reservoir model
5. Analyze
6. Bring sample to surface
7. Complete sample-capture procedure
8. Close valves and increase pressure to retain phase information
Conducting The Sampling Operation
Conducting The Sampling Operation
Importance of PVT

Oil and gas samples are taken to evaluate the properties of the produced fluids at reservoir conditions.

- Original reservoir composition(s)
- Saturation pressure at reservoir temperature
- Oil and gas densities
- Oil and gas viscosities
- Gas solubility in reservoir oil
- Liquid (NGL/condensate) content of reservoir gas
- Shrinkage (volume) factors of oil and gas from reservoir to surface
- conditions
- Equilibrium phase compositions

Accuracy of PVT Data ≠ Representivity of Sample
PVT Laboratory Tests

Compositional analysis
 • Gas chromatography

Pressure Depletion Tests
 • Constant Composition Expansion (CCE)
 • Constant Volume Depletion (CVD)
 • Differential Liberation (DL)

Viscosity Test
Density Test
Separator Test
PVT Laboratory Tests

Compositional analysis

- Liquid and gas analysis C_1 ~ C_{n+}
- Properties of the heavy components
- Properties of the stock tank liquid
PVT Laboratory Tests

Pressure Depletion Tests
Constant Composition Expansion (CCE)
Black oil
Pressure Depletion Tests
Constant Volume Depletion (CVD)
Condensate and volatile oil

Schematic Diagram of Constant Composition Expansion

- $p > p_{\text{dew}}$
- $p = p_{\text{dew}}$
- $p < p_{\text{dew}}$
- $p << p_{\text{dew}}$

Cell Volume at Dew Point
PVT Laboratory Tests

Pressure Depletion Tests
Differential Liberation (DL)
Non volatile oil
PVT Laboratory Tests

Pressure Depletion Tests

Phase transition in oil reservoir

Zone A: above p_b
Zone B: below p_b, flash
Zone C: differential

Separator
Well
Reservoir
PVT Laboratory Tests

Viscosity Test
PVT Laboratory Tests

Density Test
PVT Laboratory Tests

Separator test

Compositional Analysis of Gas from Three Stage Separator Test, Mole %

<table>
<thead>
<tr>
<th>Component</th>
<th>1st Stage</th>
<th>2nd Stage</th>
<th>3rd Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂S</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>CO₂</td>
<td>4.48</td>
<td>13.78</td>
<td>1.55</td>
</tr>
<tr>
<td>C₁</td>
<td>49.25</td>
<td>32.42</td>
<td>5.94</td>
</tr>
<tr>
<td>C₂</td>
<td>24.18</td>
<td>29.37</td>
<td>28.06</td>
</tr>
<tr>
<td>C₃</td>
<td>14.88</td>
<td>19.71</td>
<td>40.26</td>
</tr>
<tr>
<td>1-0₄</td>
<td>1.22</td>
<td>1.64</td>
<td>4.35</td>
</tr>
<tr>
<td>n-0₄</td>
<td>3.58</td>
<td>2.18</td>
<td>13.23</td>
</tr>
<tr>
<td>1-0₅</td>
<td>0.68</td>
<td>0.31</td>
<td>2.31</td>
</tr>
<tr>
<td>n-0₅</td>
<td>1.20</td>
<td>0.55</td>
<td>3.26</td>
</tr>
<tr>
<td>C₆</td>
<td>0.31</td>
<td>Trace</td>
<td>0.39</td>
</tr>
</tbody>
</table>

TOTAL 100.00 100.00 100.00

GOR in cu. ft. of gas at 14.7 psia and 60°F/bbl stock tank oil at 60°F.

Formation Volume Factor, Vₚ/VT = bbls of saturated oil at S17 psia (Saturation pressure) and 130°F per bbl of stock tank oil at 14.7 psia and 60°F.

Compositional analysis of gases performed by Ras Tanura Oil Operations Laboratory on VPC (Vapor Phase Chromatography).

Analysis of 2nd stage gas does not seem to be correct but there was not enough gas sample for a recheck.

Determined by Tutwiler method; accuracy is ± 0.1%.