

2.0 Motion in One Dimension

$>$ From everyday experience we recognize that motion represents a continuous change in the position of an object.

- In physics we can categorize motion into three types: translational, rotational, and vibrational.
- A car moving down a highway is an example of translational motion, the Earth's spin on its axis is an example of rotational motion, and the back-and-forth movement of a pendulum is an example of vibrational motion.
- In this and the next few chapters, we are concerned only with translational motion. (Later in the course we shall discuss rotational and vibrational motions.)

2.1 Position, Velocity, and Speed

- When a particle moves from its (initial) position x_{i} to its (final) position x_{f} ; it has what we call: a displacement.
D Displacement is defined as follows:

$$
\begin{equation*}
\Delta x=x_{f}-x_{i} \tag{2.1}
\end{equation*}
$$

- There are 3 cases:
$\Delta x>0$ or $x_{f}>x_{i}$:motion to the right \rightarrow
$\Delta x<0$ or $x_{f}<x_{i}$:motion to the left \leftarrow
$\Delta x=0$ or $x_{f}=x_{i}$: object returned to its
initial position, or there was no motion.
Selecting (right) as +tive and (left) as -tive is a convention in this course and we shall stick to it all over the course.

2.1 : The average velocity

\square It is defined as particle's displacement Δx divided by the time interval Δt during which that displacement occurs:

$$
\begin{equation*}
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t} \tag{2.2}
\end{equation*}
$$

There are 3 cases:

$$
\begin{aligned}
& \Delta x>0 \rightarrow \bar{v}>0 \text { :motion to the right } \rightarrow \\
& \Delta x<0 \rightarrow \bar{v}<0 \text { :motion to the left } \leftarrow \\
& \Delta x=0 \rightarrow \bar{v}=0 \text { : object returned to its }
\end{aligned}
$$

initial position, or there was no motion.

In the next slide; we show how to calculate $\overline{\boldsymbol{v}}$ from charts. Take 2 points and draw a line between them and find the slope of that line. The first point (e.g. A) represents x_{i} (initial position) while the second point (e.g B) represents the final position or X_{f}.

2.1 : The average velocity

This grapgh is called: Position-time graph for the motion of the "particle."

- When the line is point above horizontal:

$$
\rightarrow \bar{v}>0
$$

- When the line is point below horizontal:

$$
\rightarrow \bar{v}<0
$$

In the graph:
A to B: + (Increasing x)
A to C: + (Increasing x)
A to D: - (Decreasing x) C to D: - (Decreasing x)

2.1 : The average Speed

- In everyday usage, the terms speed and velocity are interchangeable. In physics, however, there is a clear distinction between these two quantities.:
- The average speed of a particle, is defined as the total distance traveled divided by the total time interval required to travel that distance:

$$
\begin{equation*}
\text { Average Speed }=\frac{\text { Total Distance }}{\text { Total Time }} \tag{2.3}
\end{equation*}
$$

The SI unit of average speed is the same as the unit of average velocity: m / s. However, unlike average velocity, average speed has no direction and hence carries no algebraic sign. Average velocity (Eq. 2.2) is the displacement divided by the time interval, while average speed (Eq. 2.3) is the distance divided by the time interval.

Example 2.1

Find the displacement, average velocity, and average speed of the car in Figure 2.1 between positions A and F.

- Solution:

In this example:

$$
\begin{aligned}
& x_{i}=x_{A}=30 m \text { and } x_{f}=x_{F}=-53 \mathrm{~m} \\
& \rightarrow \Delta x=x_{f}-x_{i}=-53-30=-83 \mathrm{~m} \\
& t_{i}=0 \mathrm{~s} \text { and } t_{f}=50 \mathrm{~s} \\
& \therefore \Delta t=50-0=50 \mathrm{~s} \\
& \therefore \bar{v}=\frac{\Delta x}{\Delta t}=\frac{-83}{50}=-1.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

For average speed: distance is $22 \mathrm{~m}(\mathrm{~A}$ to B$)+105 \mathrm{~m}(\mathrm{~B}$ to F$)=127 \mathrm{~m}$ Average Speed $=\frac{\text { Total Distance }}{\text { Total Time }}=\frac{127}{50}=2.5 \mathrm{~m} / \mathrm{s}$

Quiz

My Quiz		
Question 4 of 16 Point Value: 20 / Total Points: 10 out of 160		
Match the following items:		
Item 1		
Item 2		
Item 4		
Answer		

Click the Quiz button on
iCnrina Drn tnolhar tn odit unu ir

2.1 : Interactive Rash

$>$ In the next slide, please find an Interactive Flash. In this component you can use your mouse to discover.

- Please drag at the bottom of the grap and watch the following:

1. There are two values: time (always +tive and increasing) and position (+ or - with decreasing or increasing vlaues)
2. While dragging; Please watch for the Speed and Velocity below the graph.
3. You notice that speed keeps increasing, while velocity changes in value and sign.
4. Please pay attention to velocity at the $t=375 \mathrm{~s}$ and after?
5. We call this point in graph: turning point.
6. At turning points, velocity starts changing sign (direction) Reference:

I nteractive Quiz ${ }^{\text {I nteractive Quiz }}$

Click the Quiz button on iSpring Pro toolbar to edit your quiz

Lecture Summary

1 After a particle moves along the x axis from some initial position x_{i} to some final position x_{f}, its displacement is

$$
\begin{equation*}
\Delta x=x_{f}-x_{i} \tag{2.1}
\end{equation*}
$$

- The average velocity of a particle during some time interval is the displacement Δx divided by the time interval Δt during which that displacement occurs:

$$
\begin{equation*}
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t} \tag{2.2}
\end{equation*}
$$

The average speed of a particle is equal to the ratio of the total distance it travels to the total time interval during which it travels that distance:

$$
\begin{equation*}
\text { Average Speed }=\frac{\text { Total Distance }}{\text { Total Time }} \tag{2.3}
\end{equation*}
$$

Please read the attachment....

