

THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED

2.2 Instantaneous Velocity and Speed

- Often we need to know the velocity of a particle at a particular instant in time, rather than the average velocity over a finite time interval.
- For example, even though you might want to calculate your average velocity during a long automobile trip, you would be especially interested in knowing your velocity at the instant you noticed the police car parked alongside the road ahead of you
- With the invention of calculus (at the late 1600s), scientists began to understand how to describe an object's motion at any moment in time.
- Hence, in this lecture we shall learn how to find instantaneous quantities. In particular; we will find: $\mathrm{v}(\mathrm{t})$ and $\mathrm{a}(\mathrm{t})$ which are the instantaneous velocity and acceleration respectively.

2.2 Instantaneous Velocity and Speed

Figure 2.3: (a) Representing the motion a car. (b) An enlargement of the upper-left-hand corner of the graph shows how the blue line between positions A and B approaches the green tangent line as point B is moved closer to point A.

2.2 Instantaneous Velocity and Speed

Please watch this YouTube to get clear vision.

2.2 Instantaneous Velocity and Speed

- We define the instantaneous velocity for a particle moves on x-axis as:

$$
\begin{equation*}
v_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \tag{2.5}
\end{equation*}
$$

There are 3 cases of v_{x} as:

$$
\begin{aligned}
& v_{x}>0 \text { (Solpe is }+ \text {): motion is to the right } \rightarrow \\
& \mathrm{v}_{\mathrm{x}}<0 \text { (Slope is }- \text {) : motion is to the left } \leftarrow \\
& v_{x}=0 \text { (at maxima or minima) particle is momentarily at rest }
\end{aligned}
$$

$>$ From here on, we use the word velocity to designate instantaneous velocity. When it is average velocity we are interested in, we shall always use the adjective average.

- The instantaneous speed is defined as the magnitude of its inst. velocity. It has no direction associated with it and hence carries no algebraic sign

2.2 Instantaneous Velocity and Speed

- Example: 2.3:

A particle moves along the x axis. Its position varies with time according to the expression $x=-4 t+2 t^{2}$ where x is in meters and t is in seconds. The position-time graph for this motion is shown in the figure. Note that the particle moves in the negative x direction for the first second of motion, is momentarily at rest at the moment $\mathrm{t}=$ 1 s , and moves in the positive x direction at times $\mathrm{t}>1 \mathrm{~s}$.

Position-time particle	graph for \quad a

2.2 Instantaneous Velocity and Speed

Example: 2.3: (continues)

(a) Determine the displacement of the particle in the time intervals $t=0$ to t $=1 \mathrm{~s}$ and $\mathrm{t}=1 \mathrm{~s}$ to $\mathrm{t}=3 \mathrm{~s}$
$1^{\text {st }}$ interval (0 to 1 s):

$$
\begin{aligned}
& \because x(0)=-4(0)+2(0)=0 m=x_{i} \\
& \because x(1)=-4(1)+2(1)=-2 m=x_{f} \\
& \therefore \Delta x=x_{f}-x_{i}=-2-0=-2 m
\end{aligned}
$$

$2^{\text {nd }}$ interval (1 to 3 s):

$$
\begin{aligned}
& \because x(1)=-4(1)+2(1)=-2 m=x_{i} \\
& \because x(3)=-4(3)+2(9)=6 m=x_{f} \\
& \therefore \Delta x=x_{f}-x_{i}=6-(-2)=8 m
\end{aligned}
$$

2.2 Instantaneous Velocity and Speed

- Example: 2.3: (continues)
(b) Calculate the average velocity during these two time intervals.
$1^{\text {st }}$ interval (0 to 1 s):

$$
\because \bar{v}_{x}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}=\frac{-2}{1}=-2 \mathrm{~m} / \mathrm{s}
$$

$2^{\text {nd }}$ interval (1 to 3 s):

$$
\because \bar{v}_{x}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}=\frac{8}{2}=4 \mathrm{~m} / \mathrm{s}
$$

(c) Find the instantaneous velocity of the particle at $\mathrm{t}=2.5 \mathrm{~s}$.

$$
\begin{aligned}
& \because v_{x}(t)=-4 t+2 t^{2} \\
& \therefore v_{x}(2.5)=-4(2.5)+2(2.5)^{2}=6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2.3 Acceleration

- Just like with the case of velocity; Acceleration (a) can be and average or instantaneous.
- Average Acceleration is defined as:

$$
\begin{equation*}
\bar{a}_{x} \equiv \frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}} \tag{2.6}
\end{equation*}
$$

instantaneous acceleration is

$$
\begin{equation*}
a_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\frac{d v_{x}}{d t} \tag{2.7}
\end{equation*}
$$

(a)

(b)

- When the object's velocity and acceleration are in the same direction, the object is speeding up. On the other hand, when the object's velocity and acceleration are in opposite directions, the object is slowing down.

2.3 Acceleration

- Example: 2.5:

The velocity of a particle moving along the x axis varies in time according to the expression $\mathrm{v}_{\mathrm{x}}=\left(40-5 \mathrm{t}^{2}\right) \mathrm{m} / \mathrm{s}$, where t is in seconds.
(a) Find the average acceleration in the time interval $\mathrm{t}=0$ to $\mathrm{t}=2.0 \mathrm{~s}$.

$$
\begin{aligned}
& \because v_{x}=40-5 t^{2} \\
& \therefore v_{x i}=v_{x}(0)=40-5(0)=40 \mathrm{~m} / \mathrm{s} \\
& \therefore v_{x f}=v_{x}(2)=40-5(2)^{2}=20 \mathrm{~m} / \mathrm{s} \\
& \rightarrow a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{\Delta t}=\frac{20-40}{2}=-10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2.3 Acceleration

- Example: 2.5: (continues)
(b) Determine the acceleration at $\mathrm{t}=2.0 \mathrm{~s}$

Solution:
We want to find the instantaneous acceleration at $\mathrm{t}=2 \mathrm{~s}$
$\because v_{x}=40-5 t^{2}$
$\because a_{x}=\frac{d v_{x}}{d t}$
$\therefore a_{x}=0-5 \times 2 t=-10 t$
$\therefore a_{x}(2)=-10(2)=-20 \mathrm{~m} / \mathrm{s}^{2}$
Because the velocity of the particle is positive and the acceleration is negative, the particle is slowing down.

Acceleration Quiz

Click the Quiz button on iSpring Pro toolbar to edit your quiz

2.4 Motion Diagrams

Motion diagram for a car moving at: (a) constant velocity (b) constant acceleration in the direction of its velocity. (c) constant acceleration in the direction opposite the velocity

2.3 1-D Motion with Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult to analyze. However, a very common and simple type of onedimensional motion is that in which the acceleration is constant. When this is the case, the average acceleration over any time interval is numerically equal to the instantaneous acceleration a_{x} at any instant within the interval, and the velocity changes at the same rate throughout the motion.

- In this case we can use a set of equations shown below:

> Kinematic Equations for Motion of a Particle Under Constant Acceleration

Equation	Information Given by Equation
$v_{x f}=v_{x i}+a_{x} t$	
$x_{f}=x_{i}+\frac{1}{2}\left(v_{x i}+v_{x f}\right) t$	
$x_{f}=x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2}$	
$v_{x f}^{2}=v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right)$	

2.7 Example

- Example: 2.7:

A jet lands on an aircraft carrier at $63 \mathrm{~m} / \mathrm{s}$.
(a) What is its acceleration if it stops in 2.0 s due to an arresting cable that snags the airplane and brings it to a stop?

$$
\begin{aligned}
& v_{x f}=0, v_{x i}=63 \mathrm{~m} / \mathrm{s}, t=2 \mathrm{~s} \\
& \because v_{x f}=v_{x i}+a_{x} t \\
& \therefore 0=63+a_{x}(2) \rightarrow a_{x}=-\frac{63}{2}=-31 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(b) If the plane touches down at position $\mathrm{x}_{\mathrm{i}}=0$, what is the final position of the plane?

$$
\begin{aligned}
& \because x_{f}=x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2} \\
& \therefore x_{f}=0+63(2)+\frac{1}{2}(-31)(4)=64 m
\end{aligned}
$$

v_{x}-t graph Quiz

Click the Quiz button on
iSpring Pro toolbar to edit your
quiz

Lecture Summary

The instantaneous velocity of a particle is defined as:

$$
\begin{equation*}
v_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \tag{2.5}
\end{equation*}
$$

The instantaneous speed of a particle is equal to the magnitude of its instantaneous velocity.

The average acceleration of a particle is defined as:

$$
\begin{equation*}
\bar{a}_{x} \equiv \frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}} \tag{2.6}
\end{equation*}
$$

The instantaneous acceleration is defined as:

$$
\begin{equation*}
a_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\frac{d v_{x}}{d t} \tag{2.7}
\end{equation*}
$$

Lecture Summary (continued)

When the object's velocity and acceleration are in the same direction, the object is speeding up. On the other hand, when the object's velocity and acceleration are in opposite directions, the object is slowing down.

- The equations of kinematics for a particle moving along the x axis with uniform acceleration a_{x} are:

Kinematic Equations for Motion of a Particle Under Constant Acceleration

Equation

$$
\begin{aligned}
v_{x f} & =v_{x i}+a_{x} t \\
x_{f} & =x_{i}+\frac{1}{2}\left(v_{x i}+v_{x f}\right) t \\
x_{f} & =x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2} \\
v_{x f}{ }^{2} & =v_{x i}{ }^{2}+2 a_{x}\left(x_{f}-x_{i}\right)
\end{aligned}
$$

Information Given by Equation
Velocity as a function of time
Position as a function of velocity and time
Position as a function of time
Velocity as a function of position

Please read the attachment....

