

LECTURENO. 4

Lecture Outline

$>$ Here is a quick list of the subjects that we will cover in this presentation. It is based on Serway, Ed. 6
> 3.1 Coordinate Systems (Cartezian \& Polar)

- 3.2 Vector and Scalar Quantities
- 3.3 Some Properties of Vectors (Addition, subtraction, ...)
- 3.4 Components of a Vector and Unit Vectors
- Examples
- Lecture Summary
- Activities (Interactive Flashes)
- Quizzes

3.1 Coordinate Systems

- Many aspects of physics involve a description of a location in space. This usually is implemented using: coordinate systems
- Cartesian coordinate system is one simple system in which horizontal and vertical axes intersect at a point defined as the origin.
$>$ Sometimes it is more convenient to represent a point in a plane by its plane polar coordinates (r, θ), In this polar coordinate system, r is the distance from the origin to the point having Cartesian coordinates (x, y), and θ is the angle between a line drawn from the origin to the point and a fixed axis

3.1 Conversion Between Coordinate Systems

$>$ we can obtain the Cartesian coordinates from Polar coordinates by using the equations:

$$
\begin{align*}
& x=r \cos \theta \tag{3.1}\\
& y=r \sin \theta \tag{3.2}\\
& \tan \theta=\frac{y}{x} \tag{3.3}\\
& r=\sqrt{x^{2}+y^{2}} \tag{3.4}
\end{align*}
$$

$>$ These four expressions relating the coordinates (x, y) to the coordinates (r, θ) apply only when positive θ is an angle measured counterclockwise from the positive x axis.

- If the reference axis for the polar angle θ is chosen to be one other than the positive x axis or if the sense of increasing θ is chosen differently, then the expressions relating the two sets of coordinates will change.

Example 3.1 Polar Coordinates

- The Cartesian coordinates of a point in the xy plane are $(\mathrm{x}, \mathrm{y})=(-3.50,-2.50) \mathrm{m}$, as shown in the figure. Find the polar, (r, θ), coordinates of this point.
- Solution:
$\because r=\sqrt{x^{2}+y^{2}}=\sqrt{(-3.5)^{2}+(-2.5)^{2}}=4.30 \mathrm{~m}$
$\because \tan \theta=\frac{y}{x}=\frac{-2.5}{-3.5}=0.714$
$\therefore \theta=216^{\circ}$
- Note that you must use the signs of x and y to find that the point lies in the third quadrant of the coordinate system. That is, $\theta=216^{\circ}$ and not 35.5°.

3.2 Vector and Scalar Quantities

- A scalar quantity is completely specified by a single value with an appropriate unit and has no direction.
\checkmark A vector quantity is completely specified by a number and appropriate units plus a direction.
- Below examples of scalar and vector quantities

scalar quantities	vector quantities
Temperature	Velocity
Density	Acceleration
Distance	Force
Mass	Displacement
Speed	Torque
Volume	Weight

Figure 3.4 As a particle moves from (A) to (B) along an arbitrary path represented by the broken line, its displacement is a vector quantity shown by the arrow drawn from (A) to (B).

3.3 Some Properties of Vectors (1)

$>$ Equality of Two Vectors: $\mathrm{A}=\mathrm{B}$ if $\mathrm{A}=\mathrm{B}$ and if A and B point in the same direction along parallel lines

- Adding Vectors: To add vector B to vector A, first draw vector A on graph paper, and then draw vector B to the same scale with its tail starting from the tip of A , as shown in Figure. The resultant vector $R=A+B$ is the vector drawn from the tail of A to the tip of B.
- It is also possible to add vectors using Unit vectors. We shall discuss this feature later in this lecturer.

3.3 Some Properties of Vectors (2)

$>$ commutative law of addition : $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
$>$ associative law of addition: $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
$>$ Negative of a Vector: The negative of the vector A is defined as the vector that when added to A gives zero for the vector sum. That is:
$\mathrm{A}+(-\mathrm{A})=0$. The vectors A and -A have the same magnitude but point in opposite directions
$>$ Subtracting Vectors: We define the operation A - B as vector -B added to vector A : $\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$

- Multiplying a Vector by a Scalar: mA has same direction of A with mA in magnitude. -mA has opposite direction of A with mA in magnitude
\checkmark For example, the vector 5A is five times as long as A and points in the same direction as

3.4 Components of a Vector and Unit Vectors

$>$ Consider a vector A lying in the xy plane and making an arbitrary angle θ with the positive x axis, as shown in Figure. This vector can be expressed as the sum of two other vectors A_{x} and A_{V}.
A_{x} and A_{v} are the VECTOR COMPONENTS of The vector A
A_{x} and A_{y} are the COMPONENTS of The vector A

$$
\begin{align*}
& A_{x}=A \cos \theta \tag{3.8}\\
& A_{y}=A \sin \theta \tag{3.9}\\
& \tan \theta=\frac{A_{y}}{A_{x}} \tag{3.10}\\
& A=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}} \tag{3.11}
\end{align*}
$$

3.4 Unit Vectors

$>$ A unit vector is a dimensionless vector having a magnitude of exactly 1.
on x: we use: \hat{i}
on y: we use: \hat{j}
on z: we use: \hat{k}
$|\hat{i}|=|\hat{j}|=|\hat{k}|=1$
We express a vector using unit vetors as: $A=A_{x} \hat{i}+A_{y} \hat{j}$

Vector addition is easier with unit vectors:

$$
\begin{aligned}
& R=A+B=R_{x} \hat{i}+R_{y} \hat{j} \\
& \therefore R=\left(A_{x} \hat{i}+A_{y} \hat{j}\right)+\left(B_{x} \hat{i}+B_{y} \hat{j}\right) \\
& \Rightarrow R=\left(A_{x}+B_{x}\right) \hat{i}+\left(A_{y}+B_{y}\right) \hat{j} \\
& \therefore R_{x}=A_{x}+B_{x} \quad R_{y}=A_{y}+B_{y}
\end{aligned}
$$

3.4 Unit Vectors

$>$ To find magnitude of the Resultant vector R and the angle it makes with +tive x-axis; we just do same as we did before:

$$
\begin{align*}
& R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{\left(A_{x}+B_{x}\right)^{2}+\left(A_{y}+B_{y}\right)^{2}} \tag{3.16}\\
& \tan \theta=\frac{R_{y}}{R_{x}}=\frac{A_{x}+B_{x}}{A_{y}+B_{y}} \tag{3.17}
\end{align*}
$$

in 3D:

$$
\begin{align*}
& A=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \tag{3.18}\\
& B=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k} \tag{3.19}
\end{align*}
$$

The sum of A and B is

$$
\begin{equation*}
R=\left(A_{x}+B_{x}\right) \hat{i}+\left(A_{y}+B_{y}\right) \hat{j}+\left(A_{z}+B_{z}\right) \hat{k} \tag{3.20}
\end{equation*}
$$

magnetude of the R :
$R=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}=\sqrt{\left(A_{x}+B_{x}\right)^{2}+\left(A_{y}+B_{y}\right)^{2}+\left(A_{z}+B_{z}\right)^{2}}$

Example 3.3 The Sum of Two Vectors

- To Find the sum of two vectors A and B lying in the xy plane and given by:

$$
A=(2.0 \hat{i}+2.0 \hat{j}) m \quad \text { and } \quad B=(2.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}) \mathrm{m}
$$

Solution:

$$
\begin{aligned}
& \because R=A+B=(2.0 \hat{i}+2.0 \hat{j})+(2.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}})=(4.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}) \mathrm{m} \\
& \rightarrow|\mathrm{R}|=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{(4)^{2}+(-2)^{2}}=4.5 \mathrm{~m} \\
& \theta=\tan ^{-1} \frac{-2}{4}=\tan ^{-1}(-0.5)=-27^{\circ}
\end{aligned}
$$

- But because R is in the $4^{\text {th. }}$ quadrant; this angle is not the actual angle based on our convention. We need to add 360° to this angle:

$$
\therefore \theta=-27^{\circ}+360^{\circ}=333^{\circ}
$$

Example 3.3 The Resultant Displacement

A particle undergoes three consecutive displacements:
$d_{1}=(15 \hat{i}+30 \hat{j}+12 \hat{k}) \mathrm{cm}, d_{2}=(23 \hat{i}-14 \hat{j}-5 \hat{k}) \mathrm{cm}$
and $d_{3}=(-13 \hat{i}+15 \hat{j}) \mathrm{cm}$
Find the components of the resultant displacement and its magnitude.
Solution:
$\because R=d_{1}+d_{2}+d_{3}$
$\therefore R=(15 \hat{i}+30 \hat{j}+12 \hat{k})+(23 \hat{i}-14 \hat{j}-5 \hat{k})+(-13 \hat{i}+15 \hat{j})$
$\Rightarrow R=(25 \hat{i}+31 \hat{j}+7 \hat{k}) \mathrm{cm}$
$|\mathrm{R}|=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}=\sqrt{(25)^{2}+(31)^{2}+(7)^{2}}=40 \mathrm{~cm}$

Example 3.5 Taking a hike (a)

- A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower.
(a) Determine the components of the hiker's displacement for each day.

Components of her first day:
$A_{x}=A \cos \left(-45^{\circ}\right)=25 \cos \left(-45^{\circ}\right)=17.7 \mathrm{~km}$
$A_{y}=A \sin \left(-45^{\circ}\right)=25 \sin \left(-45^{\circ}\right)=-17.7 \mathrm{~km}$
Components of her 2nd day:

$$
\begin{aligned}
& B_{x}=B \cos \left(60^{\circ}\right)=25 \cos \left(60^{\circ}\right)=20 \mathrm{~km} \\
& B_{y}=B \sin \left(60^{\circ}\right)=25 \sin \left(60^{\circ}\right)=34.6 \mathrm{~km}
\end{aligned}
$$

Please note that: $\cos \left(315^{\circ}\right)=\cos \left(-45^{\circ}\right)$ and $\sin \left(315^{\circ}\right)=\sin \left(-45^{\circ}\right)$ 315° is the angle between $+x$ and the vector A (counterclockwise)

Example 3.5 Taking a hike (b)

(b) Determine the components of the hiker's resultant displacement R for the trip. Find an expression for R in terms of unit vectors

Solution:
$\because \mathrm{R}=\mathrm{A}+\mathrm{B}$
$\therefore R_{x}=A_{x}+B_{x}=17.7+20=37.7 \mathrm{~km}$
$R_{y}=A_{y}+B_{y}=-17.7+34.6=16.9 \mathrm{~km}$
using unit vector notation:

$$
\begin{aligned}
& R=(37.7 \hat{i}+16.9 \hat{j}) \mathrm{km} \\
& \therefore|R|=\sqrt{(37.7)^{2}+(169)^{2}}=41.3 \mathrm{~km} \\
& \theta=\tan ^{-1} \frac{16.9}{37.7}=24.1^{\circ}
\end{aligned}
$$

Lecture Summary

- Scalar quantities: are those that have only a numerical value and no associated direction.
- Vector quantities: have both magnitude and direction and obey the laws of vector addition.
- The magnitude of a vector is always a positive number.
$>$ When two or more vectors are added together, all of them must have the same units and all of them must be the same type of quantity.
$>$ We can add two vectors \mathbf{A} and \mathbf{B} graphically. In this method, the resultant vector $\mathbf{R}=\mathbf{A}+\mathbf{B}$ runs from the tail of \mathbf{A} to the tip of \mathbf{B}.
$>$ A 2nd method involves components of the vectors. \mathbf{A}_{x} of the vector \mathbf{A} is equal to the projection of \mathbf{A} along the x axis of a coordinate system, where $\mathbf{A}_{\mathrm{x}}=\mathbf{A} \cos \theta . \mathbf{A}_{\mathrm{y}}$ of \mathbf{A} is the projection of \mathbf{A} along the y axis, where $\mathbf{A}_{\mathrm{y}}=\mathbf{A} \sin \theta$

Lecture Summary (continued)

$>$ Be sure you can determine which trigonometric functions you should use in all situations, especially when θ is defined as something other than the counterclockwise angle from the positive x axis.
$>$ If a vector \mathbf{A} has an x component \mathbf{A}_{x} and a y component \mathbf{A}_{y}, the vector can be expressed in unit-vector form as $A=A_{x} \hat{i}+A_{y} \hat{j}$
$>$ We can find the resultant of two or more vectors by resolving all vectors into their x and y components, adding their resultant x and y components, and then using the Pythagorean theorem to find the magnitude of the resultant vector. We can find the angle that the resultant vector makes with respect to the x axis by using a suitable trigonometric function.

Adding 3 Vectors (Activity)

Adding 3 Vectors

Vector Subtraction(Activity)

Subtracting 2 Vectors

Please:
Press the
green button
at the bottom
Right until you
see all the
flash

Unit Vectors (Activity)

Unit Vectors

Use the sliders to set the x and y components
$|\stackrel{\rightharpoonup}{C}|=\sqrt{A_{X}{ }^{2}+A_{Y}{ }^{2}}$ =

Quiz

iSpring Pro toolbar to edit your quiz

