

Lecture Outine

$>$ Here is a quick list of the subjects that we will cover in this presentation. It is based on Serway, Ed. 6
> 4.3 Projectile Motion
> 4.4 Uniform Circular Motion
> 4.5 Tangential and Radial Acceleration

- Examples
- Lecture Summary
- Activities (Interactive Flashes)
- Quizzes

4.3 Projectile Motion

- Anyone who has observed a baseball in motion has observed projectile motion. The ball moves in a curved path, and its motion is simple to analyze if we make two assumptions: (1) the free-fall acceleration g is constant over the range of motion and is directed downward, and (2) the effect of air resistance is negligible.
$>$ We find that the path of a projectile, which we call its trajectory, is always a parabola

The parabolic path of a projectile that leaves the origin with a velocity v_{i}. The x component of v remains constant in time. The y component of velocity is zero at the peak of the path.

4.3 Projectile Motion (x \& y equations)

$>$ We will be having 2 sets of equations: 1 for x and 1 for y directions:
Fro x directon:

$$
\begin{align*}
& v_{x i}=v_{i} \cos \theta_{i} \tag{4.10a}\\
& x_{f}=v_{x i} t=\left(v_{i} \cos \theta_{i}\right) t
\end{align*}
$$

Fro y directon:

$$
\begin{align*}
& v_{y i}=v_{i} \sin \theta_{i} \tag{4.10b}\\
& \mathrm{y}_{\mathrm{f}}=v_{y i} t+\frac{1}{2} a_{y} t^{2}=\left(v_{i} \sin \theta_{i}\right) \mathrm{t}-\frac{1}{2} g t^{2} \tag{4.12}
\end{align*}
$$

$>$ Please note that you can solve for x or y independently.

4.3 Projectile Motion (trajectory equation)

- We will be having 2 sets of equations: 1 for x and 1 for y directions:

$$
\begin{aligned}
& (4.11 \mathrm{a}) \rightarrow t=\frac{x_{f}}{v_{i} \cos \theta_{i}} \\
& \therefore \mathrm{y}_{\mathrm{f}}=\left(v_{i} \sin \theta_{i}\right) \frac{x_{f}}{v_{i} \cos \theta_{i}}-\frac{1}{2} g\left[\frac{x_{f}}{v_{i} \cos \theta_{i}}\right]^{2} \\
& \Rightarrow \mathrm{y}_{\mathrm{f}}=\left(\tan \theta_{i}\right) x_{f}-\frac{g}{2 v_{i}^{2} \cos \theta_{i}{ }^{2}} x_{f}^{2} \\
& O R: y=a x-b x^{2}
\end{aligned}
$$

$>$ This is the equation of a parabola that passes through the origin.

4.3 Projectile Motion (motion diagram)

Time of Fight of a Projectile

$>$ We will consider the maximum height reached by a projectile: 1st: time of fleight: at maxi. height $v_{y f}=0$

$$
\begin{aligned}
& \because v_{y f}=v_{y i}+a_{y} t=0 \\
& \Rightarrow 0=v_{i} \sin \theta_{i}-g t_{\max } \\
& \Rightarrow t_{\max }=\frac{v_{i} \sin \theta_{i}}{g} \\
& \therefore t_{\text {fleight }}=\frac{2 v_{i} \sin \theta_{i}}{g}
\end{aligned}
$$

- Time of flight is twice the time required to reach to the max. point. We call this Time-Of-flight and is true only if the projectile final destination is on the same level as its starting point.

Maximum Height of a Projectile

- Maximum height of a projectile can be calculated using last equation: at max. point, t is $t_{\text {max }}$
$\because \mathrm{y}_{\text {max }}=\left(v_{i} \sin \theta_{i}\right) t_{\text {max }}-\frac{1}{2} g\left[t_{\text {max }}\right]^{2}$
$\therefore \mathrm{y}_{\max }=\left(v_{i} \sin \theta_{i}\right) \frac{v_{i} \sin \theta_{i}}{g}-\frac{1}{2} g\left[\frac{v_{i} \sin \theta_{i}}{g}\right]^{2}$
or $: h=\left(v_{i} \sin \theta_{i}\right) \frac{v_{i} \sin \theta_{i}}{g}-\frac{1}{2} g\left[\frac{v_{i} \sin \theta_{i}}{g}\right]^{2}$
$\therefore h=\frac{v_{i}{ }^{2} \sin \theta_{i}{ }^{2}}{2 g}$

Horizontal Range of a Projectile

- Horizontal Range of a projectile can be calculated using last equation:

$$
\because t_{\text {fleight }}=\frac{2 v_{i} \sin \theta_{i}}{g}
$$

$\because R=v_{x i} t_{\text {fleight }}$
$\therefore R=\left(v_{i} \cos \theta_{i}\right) \frac{2 v_{i} \sin \theta_{i}}{g}=\frac{2 v_{i}{ }^{2} \sin \theta_{i} \cos \theta_{i}}{g}$
$\because \sin (2 \theta)=2 \sin \theta \cos \theta$
$\therefore R=\frac{v_{i}{ }^{2} \sin 2 \theta_{i}}{g}$
Not that R is Max. when $\theta=45^{\circ} . R_{\max }=\frac{v_{i}{ }^{2}}{g}$

Efiect of starting angle on a Projectile

Example 4.3 The Long Jump \#

$>$ A long-jumper leaves the ground at an angle of 20.0° above the horizontal and at a speed of $11.0 \mathrm{~m} / \mathrm{s}$.

- (A) How far does he jump in the horizontal direction?

We can find the distance from Range (R):

$$
\therefore R=\frac{v_{i}^{2} \sin 2 \theta_{i}}{g}=\frac{11^{2} \times \sin 40}{9.8}=7.94 \mathrm{~m}
$$

(B) What is the maximum height reached?

We can use the max. height equation directly:
$\because h=\frac{v_{i}^{2} \sin \theta_{i}^{2}}{2 g}=\frac{11^{2} \sin 20^{2}}{2 \times 9.8}=0.722 \mathrm{~m}$

Example 4.5 That's Quite an Am!

- A stone is thrown from the top of a building upward at an angle of 30.0° to the horizontal with an initial speed of $20.0 \mathrm{~m} / \mathrm{s}$, as shown in the Figure. If the height of the building is 45.0 m .
(A) how long does it take the stone to reach the ground?

$$
\begin{aligned}
& \because \mathrm{y}_{\mathrm{f}}=\left(v_{i} \sin \theta_{i}\right) \mathrm{t}-\frac{1}{2} g t^{2} \\
& \because v_{i}=20 \mathrm{~m} / \mathrm{s}, \quad \theta_{i}=30^{\circ}, y_{f}=-45 \mathrm{~m} \\
& \Rightarrow-45=(20 \sin 30) t-\frac{1}{2} \times 9.8 t^{2} \\
& \Rightarrow 4.9 t^{2}-10 t-45=0 \\
& \text { Solving :t }=\frac{10 \pm \sqrt{100+882}}{9.8}=4.22 \mathrm{~s}
\end{aligned}
$$

Example 4.5 (Continued)

(B) What is the speed of the stone just before it strikes the ground?

To solve: we must find components of velocity (v_{xf} and v_{yf}) just at the ground level. Then we calculate the magnitude $=$ speed

$$
\begin{aligned}
& v_{x f}=v_{x i}=20 \cos 30=17.32 \mathrm{~m} / \mathrm{s} \\
& \because v_{y f}=v_{y i}-g t=v_{i} \sin 30-9.8 t \\
& \therefore v_{y f}=20 \sin 30-9.8(4.22)=-31.36 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow \text { speed }=v_{f}=\sqrt{v_{x f}^{2}+v_{y f}^{2}}=\sqrt{17.32^{2}+(-31.36)^{2}}=35.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(C) What is the distance between the building and the striking point?

$$
\because x_{f}=v_{x i} t=20 \cos 30(4.22)=73.1 m
$$

Example 4.6 a package dropped by aiplane

- A plane drops a package of supplies to a party of explorers. If the plane is traveling horizontally at $40.0 \mathrm{~m} / \mathrm{s}$ and is 100 m above the ground, where does the package strike the ground relative to the point at which it is released?

$$
\begin{aligned}
& \because x_{f}=v_{x i} t=40 t \quad(\text { we need } \mathrm{t}) \\
& \because y_{f}=v_{y i} t-\frac{1}{2} g t^{2} \\
& \therefore-100=0-\frac{1}{2} \times 9.8 t^{2} \\
& \Rightarrow t=\sqrt{\frac{2 \times 100}{9.8}}=4.52 \mathrm{~s} \\
& \therefore x_{f}=40 \times 4.52=181 \mathrm{~m}
\end{aligned}
$$

4.4 Uniform Circular Motion

- A uniform circular motion is of an object (e.g. a car) moving in a circular path with constant speed v.
- Note: even though speed is constant: velocity is not.
$>$ We consider velocity not constant in three cases:

1. Magnitude of v is changing
2. Direction of v is changing
3. Both of magnitude and direction are changing
$>$ centripetal acceleration is given as follows:

$$
\begin{equation*}
a_{c}=\frac{v^{2}}{r} \tag{4.15}
\end{equation*}
$$

where: v is the speed, r is the radius of circulation.
$>$ Period of circulation: $T=\frac{2 \pi r}{v}$

4.5 Tangential and Radial Acceleration

- In circular motion; there are 2 different accelerations: Radial: a_{r} and Tangential: a_{t}.
- Total Acceleration is the Vector sum of both of these 2 components.

$$
\begin{equation*}
a=a_{r}+a_{t} \tag{4.17}
\end{equation*}
$$ where:

$$
\begin{aligned}
& a_{t}=\frac{d v}{d t} \quad \text { and } \quad a_{r}=-a_{c}=-\frac{v^{2}}{r} \\
& \therefore a=\sqrt{a_{r}^{2}+a_{t}^{2}}
\end{aligned}
$$

Lecture Summary

$>$ Projectile motion is one type of two-dimensional motion under constant acceleration, where $\mathrm{a}_{\mathrm{x}}=0$ and $\mathrm{a}_{\mathrm{y}}=-\mathrm{g}$.

- It is useful to think of projectile motion as the superposition of two motions:
(1) constant-velocity motion in the x direction
$>$ (2) free-fall motion in the vertical direction subject to a constant downward acceleration of magnitude $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$.
$>$ A particle moving in a circle of radius r with constant speed v is in uniform circular motion.
$>$ If a particle moves along a curved path in such a way that both the magnitude and the direction of v change in time, then the particle has an acceleration vector that can be described by two component vectors: (1) a radial component vector a_{r} that causes the change in direction of v and (2) a tangential component vector a_{t} that causes the change in magnitude of v .

Activity Fash

- In the next slide you will be allowed to run an interactive flash.
> There will be a quiz about the flash.
$>$ In this flash: please do the following:

1. Set Initial speed to: $40 \mathrm{~m} / \mathrm{s}$
2. Set Initial Launch angle to: 50o
3. Press RUN and wait for the projectile to land.
4. Record the following results:
> Time Of Flight
$>$ Horizontal Range
$>$ Magnitude of velocity in the moment of landing
> Please answer the quiz that will be given upon finishing the flash using the results you recorded.

Quiz on Projectile I nteractivity Flash

Click the Quiz button on
iSpring Pro toolbar to edit your
quiz

Review Quizres:

-Please allow about 30 minutes to answer all Quizzes in the next slide.

- You can easily move to the end of presentation by clicking outside the quiz area.

Quizzes 4.3-4.10

Click the Quiz button on iSpring Pro toolbar to edit your quiz

