

Lecture Outine

- Here is a quick list of the subjects that we will cover in this presentation. It is based on Serway, Ed. 6
- Applications on Newton's Laws
- Objects in Equilibrium
- Traffic Light at Rest
- Weighing a Fish in an Elevator
- The Atwood Machine
- Acceleration of Two Objects Connected by a Cord
- 5.8 Forces of Friction
- Examples
- Activity Flash
- Lecture Summary
- Quizzes

5.7 Applications of Newton's Laws

$>$ when we apply Newton's laws to an object, we are interested only in external forces that act on the object
$>$ Objects in Equilibrium:
If the acceleration of an object is zero, the particle is in equilibrium

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum F_{z}=0
$$

- For example: a lamp hang by a robe from the ceiling, is in equilibrium because:

$$
\begin{aligned}
& \sum F_{y}=T-m g=0 \\
& \Rightarrow m a=0 \Rightarrow a=0
\end{aligned}
$$

- A lamp suspended from a ceiling by a chain of negligible mass balanced Under the effect of two forces \mathbf{T} and \mathbf{F}_{g}.

Example 5.4 A Traficic Lightat Rest

- A traffic light weighing 122 N hangs from a cable tied to two other cables fastened to a support, as in Figure. The upper cables make angles of 37.0° and 53.0° with the horizontal. These upper cables are not as strong as the vertical cable, and will break if the tension in them exceeds 100 N . Will the traffic light remain hanging in this situation, or will one of the cables break?

- Solution:

We analyze forces as in the table Below.

Force	\boldsymbol{x} Component	\boldsymbol{y} Component
\mathbf{T}_{1}	$-T_{1} \cos 37.0^{\circ}$	$T_{1} \sin 37.0^{\circ}$
\mathbf{T}_{2}	$T_{2} \cos 53.0^{\circ}$	$T_{2} \sin 53.0^{\circ}$
\mathbf{T}_{3}	0	-122 N

(b)

(c)

Example 5.4 (continued)

- We should use the equilibrium conditons to solve this problem:

$$
\begin{align*}
& \sum F_{x}=0 \tag{1}\\
& \sum F_{y}=0 \tag{2}\\
& (1) \Rightarrow-T_{1} \cos 37+T_{2} \cos 53=0 \tag{3}\\
& (2) \Rightarrow T_{1} \sin 37+T_{2} \sin 53-122 N=0 \tag{4}\\
& (3) \Rightarrow T_{2}=\frac{\cos 37}{\cos 53} T_{1}=1.33 T_{1} \tag{5}
\end{align*}
$$

(5) in $(4) \Rightarrow T_{1} \sin 37+1.33 \sin 53 T_{1}=122$
$\Rightarrow T_{1}=73.4 \mathrm{~N}$
(6) in (5) $\Rightarrow T_{2}=1.33 T_{1}=97.4 \mathrm{~N}$

Example 5.8 Weighing a Fish in an Eevator

- A person weighs a fish of mass m on a spring scale attached to the ceiling of an elevator, as illustrated in the figure. Show that if the elevator faccelerates either upward or downward, the spring scale gives a reading that is different from the weight of the fish.

Example 5.8 Weighing a Fish in an Eevator

- Solution:
- We apply Newton $2^{\text {nd }}$ law: $\mathbf{F}_{\text {net }}=$ ma

$$
\begin{equation*}
\sum F_{y}=T-m g=m a_{y} \tag{1}
\end{equation*}
$$

- Let us assume the weight of finsh is: 40 N , and $a y= \pm 2 \mathrm{~m} / \mathrm{s}^{2}$

Case: $\mathrm{a}_{\mathrm{y}}=+2 \mathrm{~m} / \mathrm{s}^{2}$ (Upward):

$$
\text { (1) } \Rightarrow T=m a_{y}+m g=m g\left(\frac{a_{y}}{g}+1\right)=40\left(\frac{2}{9.8}+1\right)=48.2 \mathrm{~N}
$$

Case: $a_{y}=-2 \mathrm{~m} / \mathrm{s}^{2}$ (downward):
$(1) \Rightarrow T=m a_{y}+m g=m g\left(\frac{-a_{y}}{g}+1\right)=40\left(\frac{2}{9.8}+1\right)=31.8 \mathrm{~N}$

Example 5.9 The Atwood Machine

- When two objects of unequal mass are hung vertically over a frictionless pulley of negligible mass, as in the figure, the arrangement is called an Atwood machine
- Solution:
- We have in this example 2 objects. When we apply Newton's 2nd law, we get 2 equations (1for each object).
- We must assume a direction for the motion before we can setup the two equations.
- Let us assume Clocwise direction:
- Our strategey states that: Net Force = ma for each object.
- Please look at the free body diagram (b).

Example 5.9 (continued)

Solving for m_{1} and m_{2} :

$$
\begin{align*}
& m_{1}: \sum F_{y}=T-m_{1} g=m_{1} a_{y} \tag{1}\\
& m_{2}: \sum F_{y}=m_{2} g-T=m_{2} a_{y} \tag{2}\\
& (1)+(2) \Rightarrow: \\
& m_{2} g-m_{1} g=\left(m_{1}+m_{2}\right) a_{y} \\
& \Rightarrow a_{y}=\frac{m_{2} g-m_{1} g}{m_{1}+m_{2}} \tag{3}\\
& \text { (3) in }(1): T=\frac{2 m_{1} m_{2}}{m_{1}+m_{2}} g \tag{4}
\end{align*}
$$

Ex. 5.10 2 Obj. Connected by a Cord

- A ball of mass m_{1} and a block of mass m_{2} are attached by a lightweight cord that passes over a frictionless pulley of negligible mass, as in the figure. The block lies on a frictionless incline of angle θ. Find the magnitude of the acceleration of the two objects and the tension in the cord.

(a)

(b)

(c)

Ex. 5.10 2 Obj. Connected by a Cord

- Again: we have 2 bodies, thus we must have 2 equations. We call thes equations: equatoions of motion. One equation is requuired for each body.
- We must also assume a direction for the motion. We select Clockwise.
$>$ But first; we should analys forces acting on each body.
\rightarrow Body m_{1} : T (up), $\mathrm{m}_{1} \mathrm{~g}$ (down)
Body m_{2} : from part (c) in previous figure: $\mathrm{m}_{2} \mathrm{~g} \sin \theta$ (down the incline), T up the incline.
\Rightarrow For : $\mathrm{m}_{2} \mathrm{~g} \cos \theta$ component: this is not important unless there is a friction. We will get back to this issue when we consider the friction.
- Also; the pulley is not considered now. If the pulley is not frictionless and thus rorates with motion; situation will be much different. In this case one more equation is to be added for the pulley. In this chaper; we always assume the pulley is frictionless.

Example 5.10 (continued)

$$
\begin{align*}
& m_{1}: T-m_{1} g=m_{1} a \tag{1}\\
& m_{2}: m_{2} g \sin \theta-T=m_{2} a \tag{2}\\
& (1)+(2): m_{2} g \sin \theta-m_{1} g=\left(m_{1}+m_{2}\right) \mathrm{a} \\
& \Rightarrow a=\frac{m_{2} g \sin \theta-m_{1} g}{m_{1}+m_{2}} \tag{3}
\end{align*}
$$

(3) in (1): $T-m_{1} g=m_{1}\left(\frac{m_{2} g \sin \theta-m_{1} g}{m_{1}+m_{2}}\right)$

$$
\begin{equation*}
\Rightarrow T=\frac{m_{1} m_{2} g(\sin \theta+1)}{m_{1}+m_{2}} \tag{4}
\end{equation*}
$$

5.8 Forces of Firction

- When an object is in motion either on a surface or in a viscous medium such as air or water, there is resistance to the motion because the object interacts with its surroundings. We call such resistance a force of friction
> There are two types of frictional forces:
$>$ Static: $\boldsymbol{f}_{\mathrm{s}}$ and kinetic: $\boldsymbol{f}_{\boldsymbol{k}}$
$>$ We define these two types as:

$$
\begin{align*}
& f_{s}=\mu_{s} n \tag{1}\\
& f_{k}=\mu_{k} n \tag{1}
\end{align*}
$$

$\nabla \mu_{\mathrm{s}}$ is called coefficient of static friction, and μ_{k} is called coefficient of kentic friction. $\mu_{\mathrm{s}}>\mu_{\mathrm{k}},(0 \leq \mu \leq 1)$
$>$ The direction of the friction force on an object is parallel to the surface with which the object is in contact and opposite to the actual motion.

Ex. 5.14 Two Connected Objects with Fiiction

\downarrow A block of mass m_{1} on a rough, horizontal surface is connected to a ball of mass m_{2} by a lightweight cord over a lightweight, frictionless pulley, as shown in the figure. A force of magnitude F at an angle θ with the horizontal is applied to the block as shown. The coefficient of kinetic friction between the block and surface is μ_{k}. Determine the magnitude of the acceleration of the two objects.

(a)

(b)

Example 5.14 (Continued)

- To solve, we use same steps in Example 5.9.

$$
\begin{align*}
& m_{1}: F \cos \theta-f_{k}-T=m_{1} a \tag{1}\\
& m_{2}: T-m_{2} g=m_{2} a
\end{align*}
$$

(2)

- It is our duty to find out abut f_{k}.
$\because f_{k}=\mu_{k} n$
$\because n=m_{1} g-F \sin \theta$

$$
\begin{equation*}
\therefore f_{k}=\mu_{k}\left(m_{1} g-F \sin \theta\right) \tag{3}
\end{equation*}
$$

- Let use these values: $\mathrm{m}_{1}=10 \mathrm{~kg}, \mathrm{~m}_{2}=1 \mathrm{~kg}, \mu_{\mathrm{k}}=0.1, \mathbf{F}=30 \mathrm{~N}, \theta=30^{\circ}$.
- Using equations, (1), (2) and (3) we can find:
- Acceleration: a
- Tensin: T

Example 5.14 (Continued)

- We can use these values to find:

$$
\begin{align*}
\therefore f_{k} & =\mu_{k}\left(m_{1} g-F \sin \theta\right) \\
\Rightarrow f_{k} & =0.1(10 \times 9.8-30 \sin 30) \\
& =8.3 \mathrm{~N} \tag{4}
\end{align*}
$$

(4) in (1): $30 \times \cos 30-8.3-T=10 a$
$\Rightarrow \quad 17.68-T=10 a$
(2) $\Rightarrow T-1 \times 9.8=1 a$
(6)
(5)+(6):7.88=(11)a $\quad \Rightarrow a=0.72 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore T=1 \times 0.72+1 \times 9.8=10.52 \mathrm{~N}$

Activity Fash

Force Systems

and other Mental Workout Machines

More complex systems !!!

Lectrue Summary

> Newton's first law: defined earliar.

- Newton's second law: defined earliar.
- The gravitational force: defined earliar.
$>$ Newton's third law: defined earliar.
$>$ The maximum force of static friction f_{s}, max between an object and a surface is proportional to the normal force acting on the object.
$>$ In general, $\mathrm{f}_{\mathrm{s}} \leq \mu_{\mathrm{s}} \mathrm{n}$, where μ_{s} is the coefficient of static friction and n is the magnitude of the normal force.
$>$ When an object slides over a surface, the direction of the force of kinetic friction f_{k} is opposite the direction of motion of the object relative to the surface and is also proportional to the magnitude of the normal force. The magnitude of this force is given by $f_{k} \leq \mu_{k} n$, where μ_{k} is the coefficient of kinetic friction.

Quiz 5.11 to 5.13

Click the Quiz button on iSpring Pro toolbar to edit your quiz

