## Chapter 23

## Electric Fields

## Dr. Saif M. H. Qaid

## LECTURE OUTLINE

- 23.1 Properties of Electric Charges
- 23.3 Coulomb's Law
- 23.4 Analysis Model: Particle in a Field (Electric)
- 23.6 Electric Field Lines


### 23.1 Properties of Electric Charges

- There are two kinds of electric charges
- Called positive and negative
- Negative charges are the type possessed by electrons
- Positive charges are the type possessed by protons
- Charges of the same sign repel one another and charges with opposite signs attract one another Like charges repel and unlike charges attract one another

تكون شحنة الجسيمات الأولية إمـا صفرا مثل النيترونـات، أو أعدادا صحيحة لشحـة الإلكترون.


### 23.1 Properties of Electric Charges

The smallest unit of free charge $e$ known in nature, the charge on an electron $(-e)$ or a proton $(+e)$, has a magnitude $e=1.602 \times 10^{19} \mathrm{C}$

تتتبر شُحنة الإلكترون أصغر شحنة سالبة، وشحنة البروتون أصغر شحنة موجبة TABLE 23.1

Charge and Mass of the Electron, Proton, and Neutron

| Particle | Charge (C) | Mass (kg) |
| :--- | :---: | ---: |
| Electron (e) | $-1.6021765 \times 10^{-19}$ | $9.1094 \times 10^{-31}$ |
| Proton (p) | $+1.6021765 \times 10^{-19}$ | $1.67262 \times 10^{-27}$ |
| Neutron (n) | 0 | $1.67493 \times 10^{-27}$ |

### 23.1 Properties of Electric Charges

- Nature's basic carrier of positive charge is the proton
- Protons do not move from one material to another because they are held firmly in the nucleus
- Nature's basic carrier of negative charge is the electron
- Gaining or losing electrons is how an object becomes charged
- Electric charge is always conserved
-Charge is not created, only exchanged
- Objects become charged because negative charge is transferred from one object to another


### 23.1 Properties of Electric Charges

- Charge is quantized
- All charge is a multiple of a fundamental unit of charge, symbolized by e ( $\mathrm{q}=\mathrm{Ne}$ where N : number of charge)
- Quarks are the exception
- Electrons have a charge of -e
- Protons have a charge of +e
- The SI unit of charge is the Coulomb (C)


### 23.1 Properties of Electric Charges


(a)

(b)

- The rubber rod is negatively charged - The rubber rod is negatively charged
- The glass rod is positively charged
- The two rods will attract
- The second rubber rod is also negatively charged
- The two rods will repel


### 23.1 Properties of Electric Charges

- A glass rod is rubbed with silk
- Electrons are transferred from the glass to the silk
- Each electron adds a negative charge to the silk
- An equal positive charge is left on the rod



## Conductors

- Electrical conductors are materials in which some of the electrons are free electrons
- Free electrons are not bound to the atoms
- These electrons can move relatively freely through the material
- Examples of good conductors include copper, aluminum and silver
- When a good conductor is charged in a small region, the charge readily distributes itself over the entire surface of the material


## Insulators

- Electrical insulators are materials in which all of the electrons are bound to atoms
- These electrons can not move relatively freely through the material
- Examples of good insulators include glass, rubber and wood
- When a good insulator is charged in a small region, the charge is unable to move to other regions of the material


## Semiconductors

- The electrical properties of semiconductors are somewhere between those of insulators and conductors
- Examples of semiconductor materials include silicon and germanium


## Point Charge

- The term point charge refers to a particle of zero size that carries an electric charge
- The electrical behavior of electrons and protons is well described by modeling them as point charges


### 23.3 Coulomb's Law

- ميز ان الإلتو اء لكولوم لتحققيق قانون التزبيع العكسي لقوة كهر بية بين شصنتين


Charles Coulomb measured the magnitudes of electric forces between two small charged spheres

- He found the force depended on the charges and the distance between them

$$
\begin{gathered}
F \alpha \frac{q_{1} q_{2}}{r^{2}} \\
F=K_{e} \frac{q_{1} q_{2}}{r^{2}}
\end{gathered}
$$

### 23.3 Coulomb's Law

- Mathematically,

$$
F=k_{e} \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}
$$

- The SI unit of charge is the coulomb (C) $r^{2}$
- $k_{e}$ is called the Coulomb constant
$-k_{e}=8.9876 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}=1 /\left(4 \pi e_{0}\right)$
- $\varepsilon_{0}$ is the permittivity of free space سماحية الفراغ
$-e_{\mathrm{o}}=8.8542 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$
- Typical charges can be in the $\mu \mathrm{C}$ range
- Remember, Coulombs must be used in the equation
- Remember that force is a vectorquantity
- Applies only to point charges


### 23.3 Coulomb's Law

- The electrical force between two stationary point charges is given by Coulomb's Law
- The force is inversely proportional to the square of the separation $r$ between the charges and directed along the line joining them
- The force is proportional to the product of the charges, $q_{1}$ and $q_{2}$, on the two particles
- The force is attractive if the charges are of opposite sign
- The force is repulsive if the charges are of like sign
- The force is a conservative force


### 23.3 Coulomb's Law

- Remember the charges need to be in coulombs
$-e$ is the smallest unit of charge
- except quarks
$-e=1.6 \times 10^{-19} \mathrm{C}$
- So 1 C needs $6.24 \times 10^{18}$ electrons or protons
- Typical charges can be in the $\mu \mathrm{C}$ range
- Remember that force is a vectorquantity


# Electric force \& the gravitational force between the two particles. 

مقارنة بين القوة الكهربية والقوة الميكاتيكية
The electron and proton of a hydrogen atom are separated (on the average) by a distance of approximately $5.3 \times 10^{-11} \mathrm{~m}$. Find the magnitudes of the electric force and the gravitational force between the two particles.

$$
\begin{aligned}
& \text { • يورر إلكترون واحد حول البروتون في ذرة الهيّروجين وذلك في مدار دائري نصف } \\
& \text { قطره 5.29×10-11 متر . قارن بين قوتي الجذب الكهر بية (الكولومية) والميكانيكية } \\
& \text { (النيوتونية) بينهماءْ }
\end{aligned}
$$

## Electric force \& the gravitational force between the two particles.

مقارنـة بين القوة الكهربيةّ والقوة الميكانيكية

$$
\begin{gathered}
F_{e}=K_{e} \frac{q_{e} q_{p}}{r^{2}}=9 \times 10^{9} \frac{\left(1.6 \times 10^{-19}\right)^{2}}{\left(5.29 \times 10^{-11}\right)^{2}}=8.2 \times 10^{-8} N \quad \text { القوة الكهربية } \quad \bullet \\
F_{m}=G \frac{m_{e} m_{p}}{r^{2}}=6.67 \times 10^{-11} \frac{\left(9.1095 \times 10^{-31}\right)\left(1.67261 \times 10^{-27}\right)}{\left(5.29 \times 10^{-11}\right)^{2}}=3.7 \times 10^{-47} \mathrm{~N}
\end{gathered}
$$

Therefore, the gravitational force between charged atomic particles is negligible when compared with the electric force.

وهذا فرق كبير جدا بين القوتين، لذا من الممكن إهمال قوة الجذب النيوتونية في الفيزياء الذرية

### 23.3 Coulomb's Law



When the charges are of the same sign, the force is repulsive.

a

When the charges are of opposite signs, the force is attractive.

b

## Vector Nature of Electric Forces, 1

- In vector form,

$$
\overrightarrow{\mathbf{F}}_{12}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}_{12}
$$

- Two point charges are separated by a distance $r$
- $\hat{r}_{12}$ is a unit vector directed from $q_{1}$ to $q_{2}$
- The like charges produce a repulsive force between them
- Use the active figure to move the charges and

- The force on $\mathrm{q}_{1}$ is equal in magnitude and opposite in direction to the force on $\mathrm{q}_{2}$ oobserve the force


## Vector Nature of Electrical Forces, 2

- Two point charges are separated by a distance $r$
- The unlike charges produce an attractive force between them
- With unlike signs for the charges, the product $q_{1} q_{2}$ is negative and the force is attractive
- Use the active figure to investigate the force for different positions


## Vector Nature of Electrical Forces, 3

- Electrical forces obey Newton's Third Law
- The force on $q_{1}$ is equal in magnitude and opposite in direction to the force on $q_{2} \quad \vec{F}_{21}=-\vec{F}_{12}$
- With like signs for the charges, the product $q_{1} q_{2}$ is positive and the force is repulsive
- The sign of the product of $q_{1} q_{2}$ gives the relative direction of the force between $q_{1}$ and $q_{2}$
- The absolute direction is determined by the actual location of the charges


## Electric forces: Examples

Tow point charges lie along the $x$ axis as shown in Figure. Calculate the net force acting on $q_{3}$ ? If the $\mathbf{q}_{1}=\mathbf{q}_{2}=\mathbf{0 . 6 4} \mu \mathbf{C}, \mathbf{q}_{3}=\mathbf{0 . 3 2} \mu \mathbf{C}, \quad \mathbf{r}=\mathbf{8} \mathbf{~ c m}$ شحنتان نقطيتان متسـاويتان همـ تفصلهما مسافة مقدارها r. احسب القوة المؤثرة على شحنة ثالثة موجبة إذا وقعت عند النقاط c, b, a إذا علمت أن: $\mathrm{q}_{1}=\mathrm{q}_{2}=0.64 \mu \mathrm{C}, \mathrm{q}_{3}=0.32 \mu \mathrm{C}, \quad \mathrm{r}=8 \mathrm{~cm}$


## Zero Resultant Force, Example

- Where is the resultant force equal to zero?
- The magnitudes of the individual forces will be equal
- Directions will be opposite
- Will result in a quadratic
- Choose the root that gives the forces in opposite directions



## Zero Resultant Force, Example

Three point charges lie along the $x$ axis as shown in Figure. The positive charge $q_{1}=15 \mu \mathrm{C}$ is at $x=2 \mathrm{~m}$, the positive charge $q_{2}=6 \mu \mathrm{C}$ is at the origin, and the net force acting on $q_{3}$ is zero. What is the $x$ coordinate of $q_{3}$ ?


## The Superposition Principle

- The resultant force on any one charge equals the vector sum of the forces exerted by the other individual charges that are present
- Remember to add the forces as vectors
- The resultant force on $q_{1}$ is the vector sum of all the forces exerted on it by other charges:
$\overrightarrow{\mathbf{F}}_{1}=\overrightarrow{\boldsymbol{F}}_{21}+\overrightarrow{\mathbf{F}}_{31}+\overrightarrow{\mathbf{F}}_{41}$


## Superposition of Forces

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}_{0}=\overrightarrow{\mathrm{F}}_{10}+\overrightarrow{\mathrm{F}}_{20}+\overrightarrow{\mathrm{F}}_{30}+\ldots . \\
& \overrightarrow{\mathrm{F}}_{0}=\frac{\mathrm{kq}_{0} \mathrm{q}_{1}}{\mathrm{r}_{10}^{2}} \hat{\mathrm{r}}_{10}+\frac{\mathrm{kq}_{0} \mathrm{q}_{2}}{\mathrm{r}_{20}^{2}} \hat{\mathrm{r}}_{20}+\frac{\mathrm{kq}_{0} \mathrm{q}_{3}}{\mathrm{r}_{30}^{2}} \hat{\mathrm{r}}_{30}+\ldots \\
& \underset{\mathrm{F}_{0}}{ } \overrightarrow{27}^{27} \mathrm{kq}_{0}\left(\frac{\mathrm{q}_{1}}{\mathrm{r}_{10}^{2}} \hat{\mathrm{r}}_{10}+\frac{\mathrm{q}_{2}}{\mathrm{r}_{20}^{2}} \hat{\mathrm{r}}_{20}+\frac{\mathrm{q}_{3}}{\mathrm{r}_{3}^{2}} \hat{\mathrm{r}}_{30}+\ldots .\right)=\mathrm{kq}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \frac{\mathrm{q}_{\mathrm{i}}}{\mathrm{r}_{\mathrm{i}} \mathrm{r}_{\text {aif }}^{2}} \hat{\mathrm{r}}_{\mathrm{if} \text { aid }}
\end{aligned}
$$

## Superposition Principle, Example

- The force exerted by $q_{1}$ on $q_{3}$ is $\overrightarrow{\mathbf{F}}_{13}$
- The force exerted by $q_{2}$ on $q_{3}$ is $\vec{F}_{23}$
- The resultant force exerted on $q_{3}$ is the vector sum of $\vec{F}_{13}$ and $\vec{F}_{23}$



## Superposition Principle, Example

Consider three point charges located at the corners of a right triangle as shown in Figure, where $q_{1}=q_{3}=5 \mathrm{mC}, q_{2}=$ 22 mC , and $a=0.100 \mathrm{~m}$. Find the resultant force exerted on $q_{3}$.

## Quick Quiz

Object A has a charge of $12 \mu \mathrm{C}$, and object B has a charge of $16 \mu \mathrm{C}$. Which statement is true about the electric forces on the objects?
(a) $\vec{A}_{A B}=-3 \vec{A}_{B A}$
(b) $\vec{A}_{A B}=-\vec{A}_{B A}$
(c) $3 \vec{A}_{A B}=-\vec{A}_{B A}$
(d) $\vec{A}_{A B}=3 \vec{A}_{B A}$
(e) $\vec{A}_{A B}=\vec{A}_{B A}$
(f) $3 \vec{A}_{A B}=\vec{A}_{B A}$

## Quick Quiz

(0) uick Quiz 23.3 Object A has a charge of $+2 \mu \mathrm{C}$, and object B has a charge of $+\underset{6}{6} \mathrm{C}$. Which statement is true about the electric forces on the objects?
(a) $\overrightarrow{\mathbf{F}}_{\mathrm{AB}}=-3 \overrightarrow{\mathbf{F}}_{\mathrm{BA}}$ (b) $\overrightarrow{\mathbf{F}}_{\mathrm{AB}}=-\overrightarrow{\mathbf{F}}_{\mathrm{BA}}$
(c) $3 \overrightarrow{\mathbf{F}}_{\mathrm{AB}}=-\overrightarrow{\mathbf{F}}_{\mathrm{BA}}$
(d) $\overrightarrow{\mathbf{F}}_{\mathrm{AB}}=3 \overrightarrow{\mathbf{F}}_{\mathrm{BA}}$
(e) $\overrightarrow{\mathbf{F}}_{\mathrm{AB}}=\overrightarrow{\mathbf{F}}_{\mathrm{BA}}$ (f) $3 \overrightarrow{\mathbf{F}}_{\mathrm{AB}}=\overrightarrow{\mathbf{F}}_{\mathrm{BA}}$

Q uick Quiz 23.4 A test charge of $+3 \mu \mathrm{C}$ is at a point $P$ where an external electric field is directed to the right and has a magnitude of $4 \times 10^{6} \mathrm{~N} / \mathrm{C}$. If the test charge is replaced with another test charge of $-3 \mu \mathrm{C}$, what happens to the external electric field at $P$ ? (a) It is unaffected. (b) It reverses direction. (c) It changes in a way that cannot be determined.

## Summary الخلاصة


> The force is attractive if the charges are of opposite sign
$>$ The force is repulsive if the charges are of like sign
> The force is a conservative force

## Thank You



