

Part I: Electricity

Chapter 23

Electric Fields

Dr. Saif M. H. Qaid

LECTURE OUTLINE

- 23.1 Properties of Electric Charges
- 23.3 Coulomb's Law
- 23.4 Analysis Model: Particle in a Field (Electric)
- 23.6 Electric Field Lines

- There are two kinds of electric charges
 - Called positive and negative
 - Negative charges are the type possessed by electrons
 - Positive charges are the type possessed by protons
- Charges of the same sign repel one another and charges with opposite signs attract one another
 Like charges repel and unlike charges attract one another

• تتجاذب الشحنات المختلفة في النوع ، وتتنافر الشحنات المتشابهة.

الله تكون شحنة الجسيمات الأولية إما صفرا مثل النيترونات، أو أعدادا صحيحة

The smallest unit of free charge e known in nature, the charge on an electron (-e) or a proton (+e), has a magnitude $e = 1.602 \times 10^{-19}$ C

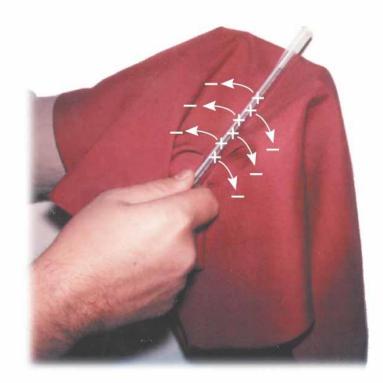

تعتبر شحنة الإلكترون أصغر شحنة سالبة، وشحنة البروتون أصغر شحنة موجبة **TABLE 23.1**

Charge and Mass of the Electron, Proton, and Neutron		
Particle	Charge (C)	Mass (kg)
Electron (e)	$-1.602\ 176\ 5 imes10^{-19}$	$9.109 \ 4 \times 10^{-31}$
Proton (p)	$+1.602\ 176\ 5 imes10^{-19}$	$1.672~62 imes 10^{-27}$
Neutron (n)	0	$1.674~93 imes 10^{-27}$

© Thomson Higher Education

- Nature's basic carrier of positive charge is the proton
 - Protons do not move from one material to another because they are held firmly in the nucleus
- Nature's basic carrier of negative charge is the electron
 Gaining or losing electrons is how an object becomes charged
- Electric charge is always conserved
 - Charge is not created, only exchanged
 - Objects become charged because negative charge is transferred from one object to another

- Charge is quantized
 - All charge is a multiple of a fundamental unit of charge, symbolized by e (q=Ne where N: number of charge)
 - Quarks are the exception
 - Electrons have a charge of –e
 - Protons have a charge of +e
 - The SI unit of charge is the Coulomb (C)



•

- The rubber rod is negatively charged
- The glass rod is positively charged
- The two rods will attract

- The rubber rod is negatively charged
- The second rubber rod is also negatively charged
- The two rods will repel PHYS 111 - KSU

- A glass rod is rubbed with silk
- Electrons are transferred from the glass to the silk
- Each electron adds a negative charge to the silk
- An equal positive charge is left on the rod

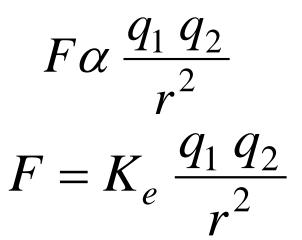
©2004 Thomson - Brooks/Cole

Conductors

- Electrical conductors are materials in which some of the electrons are free electrons
 - Free electrons are not bound to the atoms
 - These electrons can move relatively freely through the material
 - Examples of good conductors include copper, aluminum and silver
 - When a good conductor is charged in a small region, the charge readily distributes itself over the entire surface of the material

Insulators

- Electrical insulators are materials in which all of the electrons are bound to atoms
 - These electrons can not move relatively freely through the material
 - Examples of good insulators include glass, rubber and wood
 - When a good insulator is charged in a small region, the charge is unable to move to other regions of the material


Semiconductors

- The electrical properties of semiconductors are somewhere between those of insulators and conductors
- Examples of semiconductor materials include silicon and germanium

Point Charge

- The term **point charge** refers to a particle of zero size that carries an electric charge
 - The electrical behavior of electrons and protons is well described by modeling them as point charges

- ميزان الإلتواء لكولوم لتحقيق قانون التربيع العكسى لقوة كهربية بين شحنتين Suspension head Fiber B A'
- Charles Coulomb measured the magnitudes of electric forces between two small charged spheres
- He found the force depended on the charges and the distance between them

PHYS 111 - KSU

13

• Mathematically,

$$F = k_{e} \frac{|q_{1}| |q_{2}|}{|c_{1}| |q_{2}|}$$

- The SI unit of charge is the **coulomb** (C)
- *k_e* is called the **Coulomb constant**
 - $k_e = 8.9876 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 = 1/(4\pi e_0)$
 - ϵ_{o} is the **permittivity of free space** سماحية الفراغ

 $-e_0 = 8.8542 \times 10^{-12} \text{ C}^2 / \text{N} \cdot \text{m}^2$

- Typical charges can be in the μ C range
 - Remember, Coulombs must be used in the equation
- Remember that force is a *vector* quantity
- Applies only to point charges

- The electrical force between two stationary point charges is given by Coulomb's Law
- The force is inversely proportional to the square of the separation r between the charges and directed along the line joining them
- The force is proportional to the product of the charges, q₁ and q₂, on the two particles
- The force is attractive if the charges are of opposite sign
- The force is repulsive if the charges are of like sign
- The force is a conservative force

- Remember the charges need to be in coulombs
 - e is the smallest unit of charge
 - except quarks
 - $-e = 1.6 \times 10^{-19} \text{ C}$
 - So 1 C needs 6.24 x 10¹⁸ electrons or protons
- Typical charges can be in the μ C range
- Remember that force is a *vector* quantity

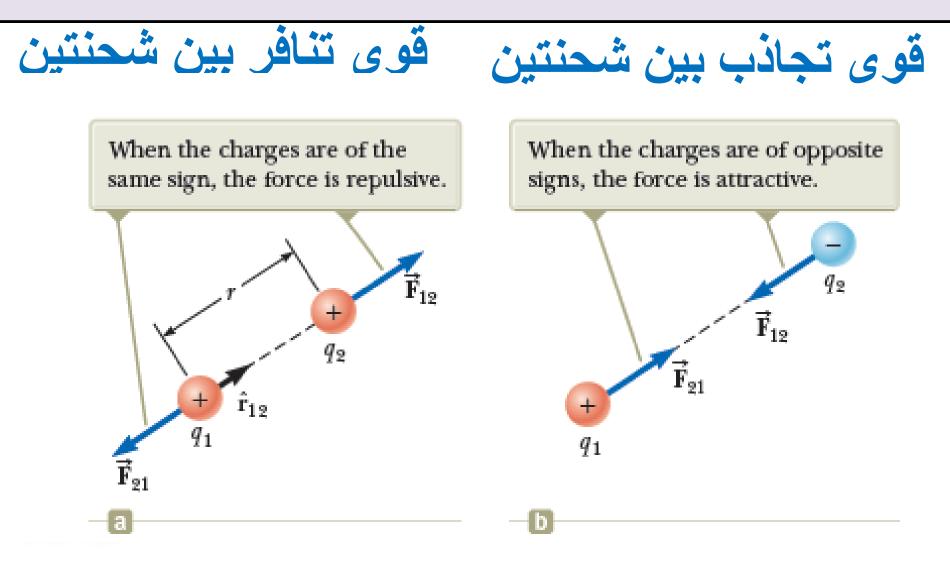
Electric force & the gravitational force between the two particles.

مقارنة بين القوة الكهربية والقوة الميكانيكية

The electron and proton of a hydrogen atom are separated (on the average) by a distance of approximately 5.3×10^{-11} m. Find the magnitudes of the electric force and the gravitational force between the two particles.

يدور إلكترون واحد حول البروتون في ذرة الهيدروجين وذلك في مدار دائري نصف
 قطره ¹¹-5.29x10 متر. قارن بين قوتي الجذب الكهربية (الكولومية) والميكانيكية

(النيوتونية) بينهما؟

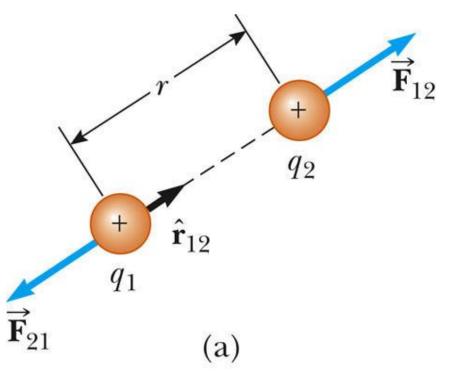

Electric force & the gravitational force between the two particles.

مقارنة بين القوة الكهربية والقوة الميكانيكية

$$F_e = K_e \frac{q_e q_p}{r^2} = 9 \times 10^9 \frac{(1.6 \times 10^{-19})^2}{(5.29 \times 10^{-11})^2} = 8.2 \times 10^{-8} N$$
 • القوة الميكانيكية
• القوة الميكانيكية
 $(9.1095 \times 10^{-31})(1.67261 \times 10^{-27})$

$$F_m = G \frac{m_e m_p}{r^2} = 6.67 \times 10^{-11} \frac{(9.1095 \times 10^{-10})^{(1.67261 \times 10^{-10})}}{(5.29 \times 10^{-11})^2} = 3.7 \times 10^{-47} N$$

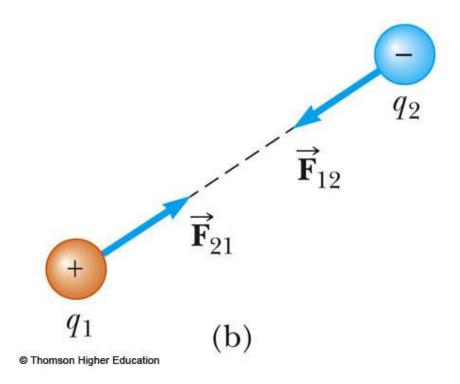
Therefore, the gravitational force between charged atomic particles is negligible when compared with the electric force.



Vector Nature of Electric Forces, 1

• In vector form,

 $\vec{\mathbf{F}}_{12} = k_e \frac{q_1 q_2}{r^2} \hat{\mathbf{r}}_{12}$

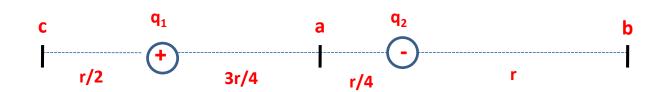

- Two point charges are separated by a distance r
- r₁₂ is a unit vector directed from q₁ to q₂
- The like charges produce a repulsive force between them
- Use the active figure to move the charges and 20bserve the force

 The force on q₁ is equal in magnitude and opposite in direction to the force on q₂

Vector Nature of Electrical Forces, 2

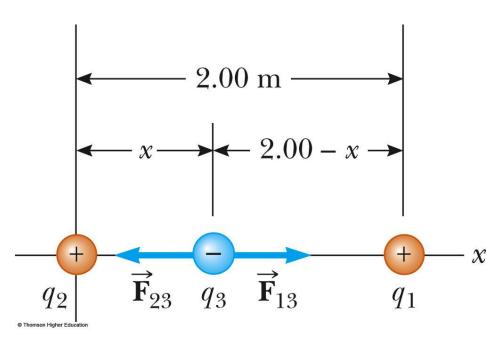
- Two point charges are separated by a distance *r*
- The unlike charges produce an attractive force between them
- With unlike signs for the charges, the product q₁q₂ is negative and the force is attractive
 - Use the active figure to investigate the force for different positions

 The force on q₁ is equal in magnitude and opposite in direction to the force on q₂

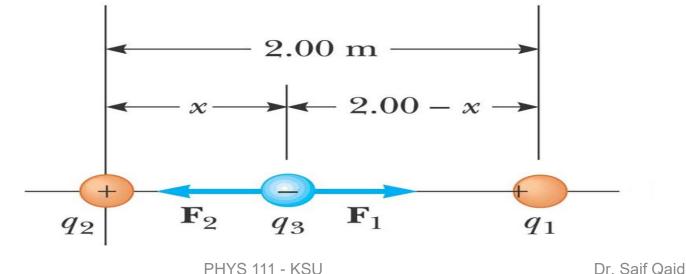

PHYS 111 - KSU

Vector Nature of Electrical Forces, 3

- Electrical forces obey Newton's Third Law
- The force on q_1 is equal in magnitude and opposite in direction to the force on q_2 $\vec{F}_{21} = -\vec{F}_{12}$
- With like signs for the charges, the product q_1q_2 is positive and the force is repulsive
- The sign of the product of q₁q₂ gives the *relative* direction of the force between q₁ and q₂
- The *absolute* direction is determined by the actual location of the charges


Electric forces: Examples

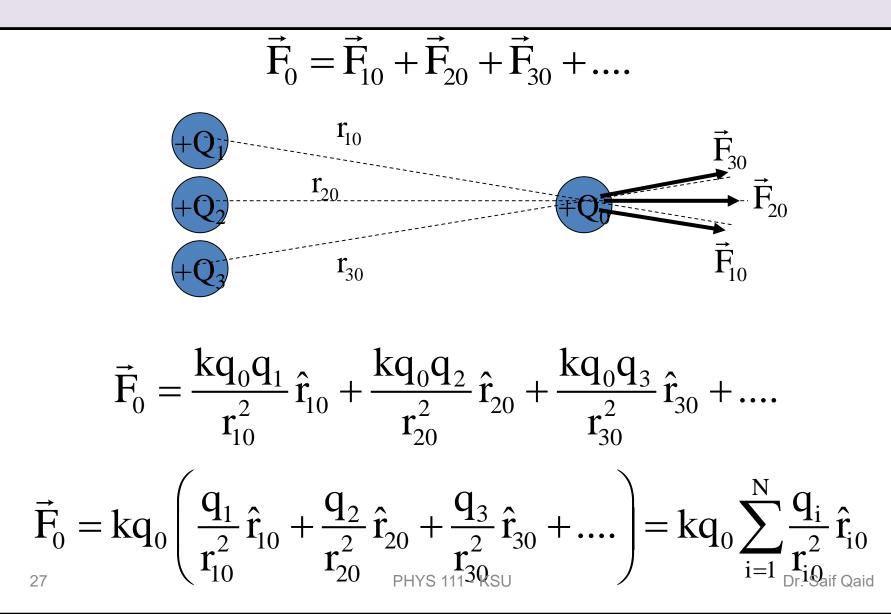
Tow point charges lie along the x axis as shown in Figure. Calculate the net force acting on q_3 ? If the $q_1=q_2=0.64 \ \mu$ C, $q_3=0.32 \ \mu$ C, $r=8 \ cm$ π -atirity induction in the probability of t


Zero Resultant Force, Example

- Where is the resultant force equal to zero?
 - The magnitudes of the individual forces will be equal
 - Directions will be opposite
- Will result in a quadratic
- Choose the root that gives the forces in opposite directions

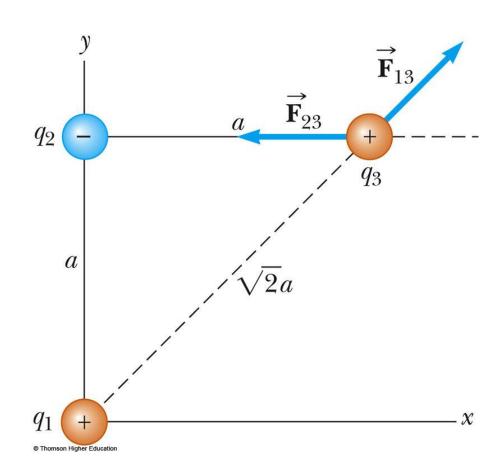
Zero Resultant Force, Example

Three point charges lie along the *x* axis as shown in Figure. The positive charge $q_1=15\mu$ C is at *x=*2m, the positive charge $q_2=6\mu$ C is at the origin, and the net force acting on q_3 is zero. What is the *x* coordinate of q_3 ?


The Superposition Principle

 The resultant force on any one charge equals the vector sum of the forces exerted by the other individual charges that are present

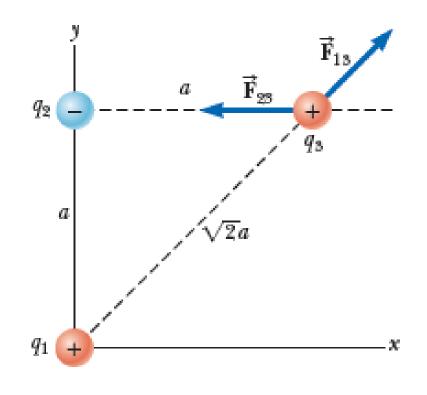
- Remember to add the forces as vectors


• The resultant force on q_1 is the vector sum of all the forces exerted on it by other charges: $\vec{F}_1 = \vec{F}_{21} + \vec{F}_{31} + \vec{F}_{41}$

Superposition of Forces

Superposition Principle, Example

- The force exerted by q_1 on q_3 is $\vec{\mathbf{F}}_{13}$
- The force exerted by q_2 on q_3 is $\vec{\mathbf{F}}_{23}$
- The *resultant force* exerted on q_3 is the vector sum of \vec{F}_{13} and \vec{F}_{23}



PHYS 111 - KSU

Superposition Principle, Example

Consider three point charges located at the corners of a right triangle as shown in Figure, where $q_1 = q_3 = 5 \text{mC}, q_2 =$ 22mC, and *a*= 0.100 m. Find the resultant force exerted on q_3 .

Quick Quiz

Object A has a charge of 12 μ C, and object B has a charge of 16 μ C. Which statement is true about the electric forces on the objects?

(a)
$$\vec{A}_{AB} = -3 \vec{A}_{BA}$$

(b) $\vec{A}_{AB} = -\vec{A}_{BA}$
(c) $3\vec{A}_{AB} = -\vec{A}_{BA}$
(d) $\vec{A}_{AB} = 3 \vec{A}_{BA}$
(e) $\vec{A}_{AB} = \vec{A}_{BA}$
(f) $3\vec{A}_{AB} = \vec{A}_{BA}$

Quick Quiz

0 uick Quiz 23.3 Object A has a charge of +2 μ C, and object B has a charge of +6 μ C. Which statement is true about the electric forces on the objects? (a) $\vec{F}_{AB} = -3\vec{F}_{BA}$ (b) $\vec{F}_{AB} = -\vec{F}_{BA}$ (c) $3\vec{F}_{AB} = -\vec{F}_{BA}$ (d) $\vec{F}_{AB} = 3\vec{F}_{BA}$ (e) $\vec{F}_{AB} = \vec{F}_{BA}$ (f) $3\vec{F}_{AB} = \vec{F}_{BA}$

Quiz 23.4 A test charge of $+3 \ \mu$ C is at a point *P* where an external electric field is directed to the right and has a magnitude of 4×10^6 N/C. If the test charge is replaced with another test charge of $-3 \ \mu$ C, what happens to the external electric field at *P*? (a) It is unaffected. (b) It reverses direction. (c) It changes in a way that cannot be determined.

الخلاصة Summary

 $F = K_e \; rac{q_1 \; q_2}{r^2}$ Coulomb's law states that the electric force exerted by a charge q_1 on a second charge q_2 is • قانون کولوم

The force is attractive if the charges are of opposite sign

- The force is repulsive if the charges are of like sign
- ➤ The force is a conservative force

Thank You

