PHYS 301

HANDOUT 2

1. Prove that $|w \bar{z}+\bar{w} z| \leq 2|w z|$.
2. Find the qubic roots of the complex number $z=-8 i$.
3. Find the square root of i.
4. Find the n -th root of a complex number $z=r e^{i \theta}$.
5. Find the 8 -th of 1 . Represent the solutions graphically. Add all the roots, what do you observe?
6. Write in the form $f(z)=u(x, y)+i v(x, y)$ the complex functions $f(z)=z^{2}$, $f(z)=z+1 / z$.
7. Find how is mapped the region of $\operatorname{Im} z \geq 0$ with the functions $w=z^{2}, w=\bar{z}$.
8. Show that the continuity of the real and imaginary part of a complex function $f(z)$ implies that the function $f(z)$ is continuous.
9. Calculate the following limits: a) $\lim _{z \rightarrow 1+i}\left(z^{2}-5 z+10\right)$ b) $\lim _{z \rightarrow-2 i} \frac{(2 z+3)(z-1)}{z^{2}-2 z+4}$
c) $\lim _{z \rightarrow 2 e^{\pi / 3 / 3}} \frac{z^{3}+8}{z^{4}+4 z^{2}+16} . \mathrm{h}$

$$
\text { (Ans: a) } 5-3 i, \text { b) }-\frac{1}{2}+\frac{11}{4} i \text { c) } \frac{3}{8}-\frac{\sqrt{3}}{8} i \text {) }
$$

10. Show that the limit $\lim _{z \rightarrow 0} \frac{z^{*}}{z}$ does not exist.
