1

PHYS 301 HANDOUT 2

- 1. Prove that $|w\overline{z} + \overline{w}z| \le 2|wz|$.
- 2. Find the qubic roots of the complex number z = -8i.
- **3.** Find the square root of *i*.
- **4.** Find the n-th root of a complex number $z = re^{i\theta}$.
- **5.** Find the 8-th of 1. Represent the solutions graphically. Add all the roots, what do you observe?
- **6.** Write in the form f(z) = u(x,y) + iv(x,y) the complex functions $f(z) = z^2$, f(z) = z + 1/z.
- 7. Find how is mapped the region of $\operatorname{Im} z \ge 0$ with the functions $w = z^2$, $w = \overline{z}$.
- 8. Show that the continuity of the real and imaginary part of a complex function f(z) implies that the function f(z) is continuous.
- 9. Calculate the following limits: a) $\lim_{z \to 1+i} (z^2 5z + 10)$ b) $\lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2 2z + 4}$
- c) $\lim_{z \to 2e^{i\pi/3}} \frac{z^3 + 8}{z^4 + 4z^2 + 16}$.h

(Ans: a)
$$5-3i$$
, b) $-\frac{1}{2}+\frac{11}{4}i$ c) $\frac{3}{8}-\frac{\sqrt{3}}{8}i$)

10. Show that the limit $\lim_{z\to 0} \frac{z^*}{z}$ does not exist.