PHYS 301
HANDOUT 3
Dr. Vasileios Lempesis

1. Find the derivative of the complex function $f(z)=z^{2}$.
2. Check if the function $f(z)=z+\left(z-z^{*}\right) / 2$ is differentiable.
3. Check if the function $f(z)=|z|^{2}$ is differentiable.
4. The complex function $f(z)=z^{2}$ is differentiable. Verify the Cauchy-Riemann conditions.
5. Discuss the Cauchy-Riemann conditions for the complex function $f(z)=|z|^{2}$.
6. For the complex function $f(z)=e^{x}(\cos y+i \sin y)$, show that $f^{\prime}(z)=f(z)$.
7. Find the derivative of the complex function $f(z)=\frac{1}{z}=\frac{1}{r} e^{-i \theta}$.
8. The function $f(z)=x+i y$ is analytic. What happens with the function $f(z)=z^{*}$? (Ver. 29)
9. The function $f(z)=u(x, y)+i v(x, y)$ is analytic. What happens with the function $f^{*}\left(z^{*}\right)$?
10. If there is some common region in which $w_{1}=u(x, y)+i v(x, y)$ and $w_{2}=w_{1}^{*}=u(x, y)-i v(x, y)$ are both analytic, prove that $u(x, y)$ and $v(x, y)$ are constants. (Arf. 364)
11. The function $f(z)$ is analytic. Show that the derivative of $f(z)$ with respect to z^{*} vanishes.
Hint. Use the chain rule and take $x=\left(z+z^{*}\right) / 2, y=\left(z-z^{*}\right) / 2 i$.
Note: This result emphasizes that our analytic function $f(z)$ is not just a complex function of two real variables x and y. It is a function of the complex variable $x+i y$. (Arf. 365)
12. Show that the function $u=e^{-x}(x \sin y-y \cos y)$ is harmonic. (b) What is the function v, such that $f(z)=u+i v$ is to be analytic? (Sch. 73)
