PHYS 301

HANDOUT 4

Dr. Vasileios Lempesis

- 1. Show that $\frac{d}{dz}e^z = e^z$ (Sch.75)
- 2. Show that a) $\frac{d}{dz}\sin z = \cos z$ b) $\frac{d}{dz}\cos z = -\sin z$ (Sch 75).
- 3. Show that $\frac{d}{dz}z^{1/2} = \frac{1}{2z^{1/2}}$, having in mind that the function $z^{1/2}$ is a multivalued one (Sch. 76).
- 4. Show that $\frac{d}{dz} \ln f(z) = \frac{f'(z)}{f(z)}$ (Sch.15)
- 5. Find the derivative of the function $\cos^2(2z+3i)$ (Sch.77)

(Ans:
$$-4\cos(2z+3i)\sin(2z+3i)$$
)

6. Find the derivative of the function $(z-3i)^{4z+2}$ (Sch.77)

(Ans:
$$(z-3i)^{4z+1}(4z+2)+4(z-3i)^{4z+2}\ln(z-3i)$$
)

7. If $w^3 - 3z^2w + 4 \ln z = 0$, calculate the derivative dw/dz. (Sch. 78)

(Ans:
$$(6zw - 4/z)/(3w^2 - 3z^2)$$

- **8.** Show that the function e^z is periodic and find its period.
- 9. Show that $\frac{\exp z_1}{\exp z_2} = \exp(z_1 z_2).$
- **10.** Show the following relations: a) $|\sin z|^2 = \sin^2 x + \sinh^2 y$, b) $|\cos z|^2 = \cos^2 x + \sinh^2 y$.
- 11. Show the following relations: a) $\frac{d}{dz}(\sinh z) = \cosh z$, b) $\frac{d}{dz}(\cosh z) = \sinh z$.
- 12. Show that $\text{Log}(e^z) = z$ $(-\pi < \text{Im } z \le \pi)$.
- 13. Study the relation $\log(z_1 z_2) = \log z_1 + \log z_2$
- **14.** Study the relation $z^{1/n} = \exp\left(\frac{1}{n}\log z\right)$.
- **15.** Calculate i^{-2i} .

- **16.** What is the principal value of $(-i)^i$.
- 17. Find the function $\sin^{-1} z$ and study its multivalue character.
- **18.** Find function $\cos^{-1} z$ and study its multivalue character.
- **19.** Discuss the Caychy-Riemann conditions for the function $f(z) = \overline{z}$
- **20.** Show that if a complex function is differentiable and has constant modulus then it is a constant function.
- **21.** Define the points where the function $f(z) = (x + ay)^2 + 2i(x ay)$ is analytic. Assume that a is real and constant.