
MATHEMATICAL PHYSICS II
COMPLEX ALGEBRA

LECTURE 4
Complex Functions



Multivalued complex functions-a

• Let’s get a complex number z in polar form. The
following holds because we can add to the phase any
integral multiple of 2π.

z = rei! = rei !+2n"( ),         n = 0,  ±1,  ± 2,  ...

• Let’s calculate its logarithm

• This means that the logarithm is a multivalued
function having an infinite number of values
for a single pair of real values r and θ.

ln z = ln rei !+2n"( ) = ln r + i ! + 2n"( )



Multivalued complex functions-b

• To avoid any ambiguity, we usually agree to
set n=0 and limit the phase to an interval

   (-π,π).
• The value of lnz with n=0 is called the

principal value of lnz
• A multivalued function can be considered as

a set of singlevalued functions. Any such a
singlevalued function member of this set is
called a branch.



Elementary complex functions-a

• Polynomial functions

• Rational functions

   where P(z), Q(z) are polynomials
• Exponential functions

P(z) = anz
n + an!1z

n!1 + ...+ a0 ,      n "N ,   an # 0 

f (z) = P(z)
Q(z)

f (z) = ez



Elementary complex functions-b

• Trigonometric functions

sin z = eiz ! e! iz

2i
cos z = eiz + e! iz

2

tan z = sin z
cos z

=
eiz ! e! iz( )
i eiz ! e! iz( ) cot z = cos z

sin z
=
i eiz + e! iz( )
eiz ! e! iz( )

Quiz: The functions sinz and cosz are entirely
analytical. Can you explain why? Could you
claim the same for tanz or cotz?



Elementary complex functions-c

• We may show that the following relations are
valid for complex trigonometric functions

 

sin2 z + cos2 z = 1
sin(!z) = ! sin z,     cos(!z) = cos(z),      tan(-z) = ! tan z
sin(z1 ± z2 ) = sin z1 cos z2 ± cos z1 sin z2

cos(z1 ± z2 ) = cos z1 cos z2 m sin z1 sin z2

tan z1 ± z2( ) = tan z1 ± tan z2

1 m tan z1 " tan z2



Elementary complex functions-d

• The hypebolic functions

sinh z = ez ! e! z

2
cos z = ez + e! z

2

tanh z = sinh z
cosh z

=
ez ! e! z( )
ez + e! z( ) coth z = cosh z

sinh z
=

ez + e! z( )
ez ! e! z( )



Elementary complex functions-e

• We may show that the following relations are
valid:

 

cosh2! sinh2 z = 1
sinh(!z) = ! sinh z,  cosh(!z) = cosh(z),   tanh(-z) = ! tanh z
sinh(z1 ± z2 ) = sinh z1 cosh z2 ± cosh z1 sinh z2

cosh(z1 ± z2 ) = cosh z1 cosh z2 m sinh z1 sinh z2

tanh z1 ± z2( ) = tanh z1 ± tanh z2

1 m tanh z1 " tanh z2



Elementary complex functions-f

• Between the trigonometric and the
hyperbolic functions we have the
following relations:
sin iz = i sinh z cos iz = cosh z tan iz = i tanh z
sinh iz = i sin z cosh iz = cos z tanh iz = i tan z



Elementary complex functions-g

• Logarithmic functions

• Functions with complex exponents. For any
complex number c, the function      is defined
by:

z = aw ! w = loga z
a > 0,    a " 0,  1

zc

zc = exp c log z( ),    z ! 0



Elementary complex functions-h

• Inverse trigonometric functions
• These are all multivalued functions and

we give here only their principal values:

sin!1 z = 1
i
ln iz + 1! z2( ) cos!1 z = 1

i
ln z + 1! z2( )

tan!1 z = 1
2i
ln 1+ iz
1! iz

"
#$

%
&' cot!1 z = 1

2i
ln z + i

z ! i
"
#$

%
&'



Elementary complex functions-i

• Inverse hyperbolic functions.
• These are all multivalued functions and

we give here only their principal values

sinh!1 z = ln z + 1+ z2( ) cosh!1 z = ln z + z2 !1( )
tanh!1 z = 1

2
ln 1+ z
1! z

"
#$

%
&' coth!1 z = 1

2
ln z +1

z !1
"
#$

%
&'



Branching points-a
• A point zo of a function f(z) is called a branching

point if a complete turn of the variable z around zo
does not return the function to its original value.

• A function has branching points when it is
multivalued. In this case it has several branches. The
branching points are those points where different
branches meet.

• The order of a branching point is n if the minimum
number of turns that are needed to return the
function at its original value is n+1.



Branching points-b

• Example: Multivalued functions arise naturally as
the inverse functions of single valued functions. For
example let the function,               in this case              .

• We can show that as z goes around a closed path
centered at z = 0, then w does not return to its original
value. We need to perform another one rotation in
order to return to the original value. The point z = 0 is
a branching point of w.

• We can also show that                is also a branching
point of w.

z = w2 w = z1/2

z = !



Branching points-c

• A multivalued function, as we said in
the beginning, can be considered as a
set of singlevalued functions. Any such
a singlevalued function member of this
set is called a branch.

• The study of multivalued functions is
considerably facilitated when they are
expressed as singlevalued functions.



Sections
• Section of a complex function is called any

line on the complex plane which connects
two branching points.

• A function is fully defined if we define its
value at a point which does not lie on a section.
If we do not cross the section the function
remains single valued.

• In the squared root function in the previous
slide the real axis x is a section since it
connects the points z = 0  and            .z = !



Turning a multivalued function in a
single valued one.

• We limit the multivalued function in a certain region
of x-y plane. For the square root function we take out
the real axis number and the points z = 0  andz = !

z = re0i

z = re2! i
x


