MATHEMATICAL PHYSICS II COMPLEX ALGEBRA LECTURE 4
 Complex Functions

Multivalued complex functions-a

- Let's get a complex number z in polar form. The following holds because we can add to the phase any integral multiple of 2π.

$$
z=r e^{i \theta}=r e^{i(\theta+2 n \pi)}, \quad n=0, \pm 1, \pm 2, \ldots
$$

- Let's calculate its logarithm

$$
\ln z=\ln r e^{i(\theta+2 n \pi)}=\ln r+i(\theta+2 n \pi)
$$

- This means that the logarithm is a multivalued function having an infinite number of values for a single pair of real values r and θ.

Multivalued complex functions-b

- To avoid any ambiguity, we usually agree to set $n=0$ and limit the phase to an interval $(-\pi, \pi)$.
- The value of $\ln z$ with $n=0$ is called the principal value of lnz
- A multivalued function can be considered as a set of singlevalued functions. Any such a singlevalued function member of this set is called a branch.

Elementary complex functions-a

- Polynomial functions

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}, \quad n \in N, \quad a_{n} \neq 0
$$

- Rational functions

$$
f(z)=\frac{P(z)}{Q(z)}
$$

where $P(z), Q(z)$ are polynomials

- Exponential functions

$$
f(z)=e^{z}
$$

Elementary complex functions-b

- Trigonometric functions

$$
\begin{gathered}
\sin z=\frac{e^{i z}-e^{-i z}}{2 i} \quad \cos z=\frac{e^{i z}+e^{-i z}}{2} \\
\tan z=\frac{\sin z}{\cos z}=\frac{\left(e^{i z}-e^{-i z}\right)}{i\left(e^{i z}-e^{-i z}\right)}
\end{gathered} \quad \cot z=\frac{\cos z}{\sin z}=\frac{i\left(e^{i z}+e^{-i z}\right)}{\left(e^{i z}-e^{-i z}\right)}
$$

Quiz: The functions $\sin z$ and $\cos z$ are entirely analytical. Can you explain why? Could you claim the same for $\tan z$ or $\cot z$?

Elementary complex functions-c

- We may show that the following relations are valid for complex trigonometric functions

$$
\begin{aligned}
& \sin ^{2} z+\cos ^{2} z=1 \\
& \sin (-z)=-\sin z, \quad \cos (-z)=\cos (z), \quad \tan (-z)=-\tan z \\
& \sin \left(z_{1} \pm z_{2}\right)=\sin z_{1} \cos z_{2} \pm \cos z_{1} \sin z_{2} \\
& \cos \left(z_{1} \pm z_{2}\right)=\cos z_{1} \cos z_{2} \mp \sin z_{1} \sin z_{2} \\
& \tan \left(z_{1} \pm z_{2}\right)=\frac{\tan z_{1} \pm \tan z_{2}}{1 \mp \tan z_{1} \cdot \tan z_{2}}
\end{aligned}
$$

Elementary complex functions-d

- The hypebolic functions

$$
\begin{gathered}
\sinh z=\frac{e^{z}-e^{-z}}{2} \quad \cos z=\frac{e^{z}+e^{-z}}{2} \\
\tanh z=\frac{\sinh z}{\cosh z}=\frac{\left(e^{z}-e^{-z}\right)}{\left(e^{z}+e^{-z}\right)} \quad \operatorname{coth} z=\frac{\cosh z}{\sinh z}=\frac{\left(e^{z}+e^{-z}\right)}{\left(e^{z}-e^{-z}\right)}
\end{gathered}
$$

Elementary complex functions-e

- We may show that the following relations are valid:

$$
\begin{aligned}
& \cosh ^{2}-\sinh ^{2} z=1 \\
& \sinh (-z)=-\sinh z, \cosh (-z)=\cosh (z), \tanh (-z)=-\tanh z \\
& \sinh \left(z_{1} \pm z_{2}\right)=\sinh z_{1} \cosh z_{2} \pm \cosh z_{1} \sinh z_{2} \\
& \cosh \left(z_{1} \pm z_{2}\right)=\cosh z_{1} \cosh z_{2} \mp \sinh z_{1} \sinh z_{2} \\
& \tanh \left(z_{1} \pm z_{2}\right)=\frac{\tanh z_{1} \pm \tanh z_{2}}{1 \mp \tanh z_{1} \cdot \tanh z_{2}}
\end{aligned}
$$

Elementary complex functions-f

- Between the trigonometric and the hyperbolic functions we have the following relations: $\sin i z=i \sinh z \quad \cos i z=\cosh z \quad \tan i z=i \tanh z$ $\sinh i z=i \sin z \quad \cosh i z=\cos z \quad \tanh i z=i \tan z$

Elementary complex functions-g

- Logarithmic functions

$$
\begin{aligned}
& z=a^{w} \Rightarrow w=\log _{a} z \\
& a>0, \quad a \neq 0,1
\end{aligned}
$$

- Functions with complex exponents. For any complex number c, the function z^{c} is defined by:

$$
z^{c}=\exp (c \log z), \quad z \neq 0
$$

Elementary complex functions-h

- Inverse trigonometric functions
- These are all multivalued functions and we give here only their principal values:

$$
\begin{array}{cc}
\sin ^{-1} z=\frac{1}{i} \ln \left(i z+\sqrt{1-z^{2}}\right) \quad \cos ^{-1} z=\frac{1}{i} \ln \left(z+\sqrt{1-z^{2}}\right) \\
\tan ^{-1} z=\frac{1}{2 i} \ln \left(\frac{1+i z}{1-i z}\right) \quad \cot ^{-1} z=\frac{1}{2 i} \ln \left(\frac{z+i}{z-i}\right)
\end{array}
$$

Elementary complex functions-i

- Inverse hyperbolic functions.
- These are all multivalued functions and we give here only their principal values

$$
\begin{array}{cc}
\sinh ^{-1} z=\ln \left(z+\sqrt{1+z^{2}}\right) & \cosh ^{-1} z=\ln \left(z+\sqrt{z^{2}-1}\right) \\
\tanh ^{-1} z=\frac{1}{2} \ln \left(\frac{1+z}{1-z}\right) \quad \operatorname{coth}^{-1} z=\frac{1}{2} \ln \left(\frac{z+1}{z-1}\right)
\end{array}
$$

Branching points-a

- A point z_{0} of a function $f(z)$ is called a branching point if a complete turn of the variable z around z o does not return the function to its original value.
- A function has branching points when it is multivalued. In this case it has several branches. The branching points are those points where different branches meet.
- The order of a branching point is n if the minimum number of turns that are needed to return the function at its original value is $n+1$.

Branching points-b

- Example: Multivalued functions arise naturally as the inverse functions of single valued functions. For example let the function, $z=w^{2}$ in this case $w=z^{1 / 2}$.
- We can show that as z goes around a closed path centered at $z=0$, then w does not return to its original value. We need to perform another one rotation in order to return to the original value. The point $z=0$ is a branching point of w.
- We can also show that $z=\infty$ is also a branching point of w.

Branching points-c

- A multivalued function, as we said in the beginning, can be considered as a set of singlevalued functions. Any such a singlevalued function member of this set is called a branch.
- The study of multivalued functions is considerably facilitated when they are expressed as singlevalued functions.

Sections

- Section of a complex function is called any line on the complex plane which connects two branching points.
- A function is fully defined if we define its value at a point which does not lie on a section. If we do not cross the section the function remains single valued.
- In the squared root function in the previous slide the real axis x is a section since it connects the points $z=0$ and $z=\infty$.

Turning a multivalued function in a single valued one.

- We limit the multivalued function in a certain region of $x-y$ plane. For the square root function we take out the real axis number and the points $z=0$ and $z=\infty$

