Phytochemicals of *Melia azedarach* Inhibiting the Growth of *Rhizoctonia solani*

Iffat Siddiqui*, Najat A. Bokhari, Kahkashan Perveen and Mona S. Alwahibi

Department of Botany and Microbiology, King Saud University, Riyadh, Kingdom of Saudi Arabia.

(Received: 28 January 2014; accepted: 04 April 2014)

Black scurf is one of the oldest and common diseases of potato stems and stolons below the soil surface caused by *Rhizoctonia solani*. The present study was carried out to investigate the antifungal potential of *Melia azedarach* against this soil-borne fungal pathogen. Different concentrations (1, 2, …, 5%) of aqueous, methanol, *n*-hexane and chloroform extracts of leaves, stems and fruits of *M. azedarach* were prepared and were evaluated for their *in vitro* antifungal activity. Data were analyzed by Tukey HSD test at 5% level of significance. All the extracts showed variable antifungal activity. In general, leaf extracts exhibited the highest inhibitory effect against growth of the fungal pathogen followed by stem-bark and fruit extracts, respectively. Among the various extracts, leaf chloroform extract, stem-bark methanolic extract and fruit aqueous extract showed the best antifungal activity resulting in 20–89%, 4–85% and 28–70% reduction in fungal biomass over corresponding control treatments, respectively.

Key words: *Rhizoctonia solani; Melia azedarach; Antifungal activity; Fungal biomass.*
Meliaceae are known for their antifungal properties\(^7\). Many members of Meliaceae are being screened worldwide for their medicinal applications, one among them is *Melia azedarach* L. Many tribal use members of family Meliaceae for both fungal and bacterial ailments since ancient times. *M. azedarach* is a native of Tropical Asia but introduced and naturalized in many other countries like Australia, Africa, United States of America and many Arab countries. Screening of three species of Meliaceae family namely *Azadirecta indica*, *Toona ciliata* and *M. azedarach* were done against *Macrophoma phaseolina* and it was found that the aqueous extracts of these plants exhibit antifungal potential\(^8\). There are reports that residues of *M. azedarach* contain antifungal acids namely hydroxy coumarin scopoletin, pinoresinol, 4-hydroxyl-3-methycinnamaldehyde and vanillin\(^9,10\). The objective of present study was to investigate the antifungal activity of aqueous as well as organic solvent extracts of leaf, stem bark and fruits of *Melia azedarach* against *R. solani*.

MATERIALS AND METHODS

Isolation of target fungal species

R. solani was isolated from potato tuber infected with black scurf disease. Infected portions bearing the fungal sclerotia were cut into small pieces and surface sterilized with 1% sodium hypochlorite solution for 2 minutes. Thereafter, thorough washing with sterilized water was done and pieces were placed on potato dextrose agar (PDA) medium in 9-cm diameter Petri plates and incubated at 25±2 °C for one week. Pure culture was stored in the refrigerator at 4 °C.

Extract preparation

Leaf, stem-bark and fruit materials of *M. azedarach* were collected. Plant materials were thoroughly washed in running tap water and surface sterilized with 1% sodium hypochlorite solution, thoroughly washed with sterilized water, dried at 40 °C in an electric oven and grinded to form powder. This powder was then stored in polyethylene bags and used according to the need of experimental work to make extracts with water, methanol, *n*-hexane and chloroform.

Bioassays with aqueous and organic solvent extracts

Twenty grams of powdered materials of each plant part were soaked in 100 mL of sterilized distilled water, *n*-hexane, chloroform and methanol for 24 hours and filtered to prepare 20% extracts. The extracts were dried in an oven at 45 °C until the desired quantity (2 mL) was received. Then the final volume was made up to 100 mL by adding autoclaved sterilized distilled water. Potato dextrose broth was autoclaved and cooled to 40 °C. Eighty milliliters of medium were poured in 250 mL flasks. Appropriate quantities of stock solutions and distilled water were added to make 1, 2, ..., 5% (v/v) concentrations and to make a final volume of 100 mL in each flask. Control treatments were without plant extracts and only received distilled water or methanol, *n*-hexane or chloroform (2 mL in 100 mL water). Five millimeter diameter actively growing mycelial disks of *R. solani* were transferred to the flasks aseptically. Flasks were incubated at 25 °C ± 2 for one week in an incubator. Each treatment was replicated three times. Fungal biomass in each flask was filtered, dried to constant weight and weighed after one week.

Statistical analysis

Two factor Completely Randomized Design (CRD) was applied. All the data were analyzed by analysis of variance (ANOVA). The comparisons among means were worked out using Tukey HSD test at 5% level of significance.

RESULTS

Leaf extracts were the most effective in reducing fungal growth as compared to stem-bark and fruit extracts. Among all the extracts screened with different solvents, chloroform extracts showed promising results with maximum inhibition in fungal biomass over control. It was also observed that from 1–5% concentrations of different aqueous and organic solvent extracts from all the parts of plant, 5% concentration showed maximum reduction in fungal biomass (Table 1-3).

Aqueous extracts of fruit of *M. azedarach* at all concentration reduced biomass of *R. solani* by 28–70%. Similarly, all the concentrations of metanolic and *n*-hexane extracts of fruit significantly declined the biomass of target fungal pathogen by 25–55% and 21–40%, respectively. Chloroform extract, however, not proved much inhibitory against the growth of fungal pathogen. Antifungal effect of lower concentrations of 1%
and 2% of fruit chloroform extract was insignificant. By contrast, higher chloroform extract concentrations significantly lowered the fungal biomass by 24–81% over corresponding control treatment (Table 1).

In general, various types of stem extracts of *M. azedarach* exhibited variable antifungal activity. Methanol stem extract showed the best antifungal activity resulting in 4–85% reduction in fungal biomass at different concentrations.

Table 1. Effect of aqueous and organic solvent extracts of *M. azedarach* fruit on biomass of *Rhizoctonia solani*

<table>
<thead>
<tr>
<th>Conc. (%)</th>
<th>Water Fungal biomass (mg)</th>
<th>Methanol Fungal biomass (mg)</th>
<th>n-hexane Fungal biomass (mg)</th>
<th>Chloroform Fungal biomass (mg)</th>
<th>Mean Fungal biomass (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>216.67±8.82a 210.00±5.77a</td>
<td>123.33±3.33d 103.33±3.33d</td>
<td>163.33±15.4A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>156.67±3.33b 156.67±3.33b</td>
<td>93.33±3.33gh 96.00±3.06gh</td>
<td>125.67±9.45B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td>143.33±3.33c 146.67±3.33c</td>
<td>97.00±0.58fg 89.00±0.58fg</td>
<td>119.00±7.96B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>116.67±3.33de 130.00±5.77cd</td>
<td>94.00±0.58fg 77.67±1.45hi</td>
<td>104.58±6.26C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td>96.67±3.33fg 116.67±3.33de</td>
<td>84.00±0.58ghi 48.33±0.88k</td>
<td>86.42±7.57D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>65.00±2.89j 93.33±3.33gh</td>
<td>74.00±0.58ij 19.00±0.58l</td>
<td>62.83±8.29E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>132.50±11.8B 142.22±8.99A</td>
<td>94.28±3.73C 72.22±7.21D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means sharing different letters in a row or column are significantly different (P≤0.05). Small letters represent comparison among interaction means and capital letters are used for overall mean.

Table 2. Effect of aqueous and organic solvent extracts of *M. azedarach* stem-bark on biomass of *Rhizoctonia solani*

<table>
<thead>
<tr>
<th>Conc. (%)</th>
<th>Water Fungal biomass (mg)</th>
<th>Methanol Fungal biomass (mg)</th>
<th>n-hexane Fungal biomass (mg)</th>
<th>Chloroform Fungal biomass (mg)</th>
<th>Mean Fungal biomass (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>126.67±3.33ab 139.67±0.33a</td>
<td>98.00±1.15cd 90.33±0.33de</td>
<td>113.67±6.14A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>113.33±6.67bc 135.67±2.96a</td>
<td>96.33±1.86d 90.00±0.00de</td>
<td>108.83±5.57A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td>96.67±3.33d 86.67±3.33def</td>
<td>86.00±0.58def 69.00±0.58gh</td>
<td>84.58±3.17B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>96.67±3.33d 70.00±5.77gh</td>
<td>87.33±0.88def 69.00±0.58gh</td>
<td>80.75±3.82B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td>73.33±3.33fg 65.00±2.89gh</td>
<td>78.00±0.58efg 59.00±0.58hi</td>
<td>52.67±7.96C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>68.67±0.33i 20.00±5.77j</td>
<td>74.00±0.58fg 49.00±0.58l</td>
<td>54.08±8.62C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>85.89±9.37A 86.17±10.19A</td>
<td>86.61±2.15A 71.06±3.67B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means sharing different letters in a row or column are significantly different (P≤0.05). Small letters represent comparison among interaction means and capital letters are used for overall mean.

Table 3. Effect of aqueous and organic solvent extracts of *M. azedarach* leaves on biomass of *Rhizoctonia solani*

<table>
<thead>
<tr>
<th>Conc. (%)</th>
<th>Water Fungal biomass (mg)</th>
<th>Methanol Fungal biomass (mg)</th>
<th>n-hexane Fungal biomass (mg)</th>
<th>Chloroform Fungal biomass (mg)</th>
<th>Mean Fungal biomass (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>116.7±3.3 a 106.7±3.3 a</td>
<td>89.7±3.3 b 49.3±0.7 gh</td>
<td>90.6±7.8 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>76.7±3.3 b-e 86.7±3.3 bc</td>
<td>80.0±5.8 bcd 39.3±0.7 hi</td>
<td>70.7±5.8 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td>76.7±3.3 b-e 73.3±3.3 cde</td>
<td>78.0±0.6 b-e 29.0±0.6 iij</td>
<td>64.3±6.2 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>58.3±4.4 fg 65.0±2.9 ef</td>
<td>68.0±0.6 def 19.0±0.6 jkl</td>
<td>52.6±6.0 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td>48.3±1.7 gh 49.3±0.7 gh</td>
<td>58.0±0.6 fg 8.3±0.3 kl</td>
<td>41.0±5.8 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>49.3±0.7 gh 13.3±3.3 kl</td>
<td>48.3±0.3 gh 5.0±0.6 l</td>
<td>29.0±6.1 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>71.0±5.8 A 65.7±7.2 B</td>
<td>70.3±3.5 A 25.0±3.9 C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means sharing different letters in a row or column are significantly different (P≤0.05). Small letters represent comparison among interaction means and capital letters are used for overall mean.
Aqueous and chloroform extract also showed pronounced antifungal activity resulting in 11–45% and 0.4–46%, respectively. n-hexane extract showed the least antifungal activity where only the highest concentrations of 4% and 5% significantly reduced fungal biomass by 20% and 24%, respectively (Table 2, Fig. 1).

Different concentrations of leaf extracts of *M. azedarach* inhibited the fungal growth to variable extents. Chloroform extract was found to be the most effective among the other extracts used in this experiment, followed by methanol aqueous and n-hexane extract (Table 3). There was 20–89%, 12–87%, 34–58% and 10–21% reduction in fungal biomass by different concentrations of chloroform, methanol, aqueous and n-hexane extract, respectively (Fig. 1).

![Fig. 1](image-url)

Fig. 1. Percentage decrease in fungal biomass due to various extract treatments over control
DISCUSSION

Present study reveals that leaves of *M. azedarach* possess more antifungal properties than stem-bark and root, similarly leaves of *Jatropha curcas* extract possess better antifungal properties when compared to stem and root extracts. Leaf is one of the major accumulatory parts of plants for bioactive compounds and people have generally preferred it for its therapeutic purposes. It has been reported that ethanolic extracts of senescent leaves of *M. azedarach* exhibited fungistatic activity against *Diaporthe phaseolorum* var. *meridionales*, *Aspergillus flavus*, *Fusarium solani*, *F. oxysporum*, *F. verticillioides*, and *Sclerotinia sclerotiorum*. Similarly, fungicidal activity of ethanol and chloroform leaf extracts of this tree species against *Ascochyta rabiei*, was reported. The antifungal activity of *M. azedarach* could be attributed to the presence of antifungal compounds namely vanillin, hydroxycoumarin scofoletin, (+) pinoresinol and 4-hydroxy-3-methoxycinnamaldehyde. Recently, five compounds namely â-sitosterol, â-amyrin, ursolic acid, 3-5 dimethoxy benzoic acid and benzoic acid have been isolated from the leaves of *M. azedarach*, which showed antifungal activity against *A. rabiei*. Overall methanolic and chloroform extracts showed considerable antifungal activity over *n*-hexane. However, in the stem-bark extracts, methanol extracts showed more pronounced antifungal effect than chloroform extract. Similarly, it was reported that alcoholic extracts possess more antibacterial activity than chloroform extracts. This shows that some compounds are more effective and extraction is more efficient in more polar rather than in less polar solvents. Similar results have been reported by previous researchers.

Aqueous extracts of fruit also showed considerable antifungal effects by reducing the fungal biomass. Our findings are in line with the findings of other scientists. They screened aqueous extracts of three plants of Meliaceae and found that both *Azadirachta indica* and *M. azedarach* significantly reduced biomass of *M. phaseolina* by 34–85% and 43–78%, respectively. It has been reported by earlier workers, that as the concentration increases antifungal activity also increases. Recently, methanolic extracts of three parts of *Sorghum halepense* were evaluated and found that the highest concentration possessed the highest antifungal property.

In conclusion, generally all types of extracts from *M. azedarach* leaf, stem and fruit showed different levels of antifungal activity against *R. solani*. The best antifungal activity was exhibited by chloroform extract of leaf, methanolic extract of stem-bark and aqueous extract of fruit resulting in 20–89%, 4–85% and 28–70% reduction in fungal biomass over control, respectively.

ACKNOWLEDGEMENTS

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-066.

REFERENCES

J PURE APPL MICROBIO. 8(2), APRIL 2014.
7. Djébali, N., Belhassen, T. Field study of the relative susceptibility of eleven potato (Solanum tuberosum L.) varieties and the efficacy of two fungicides against Rhizoctonia solani

