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Abstract

In this paper, we consider a two color multi-drawing urn model. At each discrete time step, we
draw a sample of m balls (m ≥ 2), which will be returned to the urn together with a random number
of balls. The replacement rule is a 2× 2 matrix depending on X and Y , two discrete positive random
variables with finite means and variances. Using a stochastic approximation algorithm, we study the
asymptotic behavior of the urn.
Keywords: central limit theorem, unbalanced urn, martingale, stochastic algorithm.

1 Introduction

The classical Pólya urn was introduced by Pólya and Eggenberger [2] describing contagious diseases. The
first model is as follows: An urn contains balls of two colors at the start, white and blue. At each step,
one picks a ball randomly and returns it to the urn with a ball of the same color.

Afterward, there were many generalisations and urn model become a simple tool to describe several mod-
els such finance, clinical trials (see [3], [8]), biology (see [16]), computer sciences, internet (see [6],[19]),
etc.
Recently, H. Mahmoud, M.R. Chen, C.Z Wei, M. kuba and H. Sulzbach [10, 11, 12, 13, 14, 15], have
focused on the multidrawing urn. Instead of picking a ball, one picks a sample of m balls (m ≥ 1), say
l white and (m − l) blue balls. The pick is returned back to the urn together with am−l white and bl

blue balls, where al and bl, 0 ≤ l ≤ m are integers. At first, they treated two particular cases when
{am−l = c× l and bm−l = c× (m− l)} and when {am−l = c× (m− l) and bm−l = c× l}, where c
is a positive constant. By different methods as martingales and moment methods, the authors described
the asymptotic behavior of the urn composition. When considering the general case and in order to
ensure the existence of a martingale, they supposed that Wn, the number of white balls in the urn after
n draws, satisfies the affinity condition i.e, there exist two deterministic sequences (αn) and (βn) such
that, for all n ≥ 0, E[Wn+1|Fn] = αnWn + βn. Under this condition, the authors focused on small and
large index urns. Later, the affinity condition was removed in the work of C. Mailler, N. Lasmer and S.
Olfa [1], they generalized this model and looked at the case of more than two colors.

In the literature, there are few works about unbalanced urns, mainly the papers of R. Aguech [17] and S.
Janson [20] who dealt with urns with a simple pick. Whereas H. Renlund [4, 5] considered a model with
two draws at each epoch. The authors used different models such as martingale, stochastic algorithm
and embedding in continuous time. They gave limit theorems of the asymptotic behavior of the urn.
In this paper, we deal with a two color unbalanced urn class with multiple drawing and random addition.
Let denote by Wn (resp Bn) the number of white balls (resp blue balls) and by Tn the total number of
balls in the urn at time n. Let m a non null integer, the model we study is defined as follows: At each
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discrete step we draw a sample of m balls (we assume that the initial composition of the urn is more
than m to ensure that the first draw is possible). Let ξn be the number of white balls among the nth

sample, then we return the drawn sample together with Qn(ξn,m− ξn)t balls, where Qn is a 2×2 matrix
depending on the random variables Xn and Yn, where (Xn)n≥1 (resp (Yn)n≥1) are independent copies of
X (resp Y ), two positive independent random variables with finite means and variances.
We summarize the evolution of the urn by the following recurrence(

Wn

Bn

)
D=

(
Wn−1

Bn−1

)
+ Qn

(
ξn

m− ξn

)
. (1)

Let (Fn)n≥0 be the σ-field generated by the first n draws. Note that, with these notations, we have for
k ∈ {0, ..,m},

P[ξn = k|Fn−1] =

(
Wn−1

k

)(
Bn−1
m−k

)(
Tn−1

m

) .

We aim to extend the results of recent works [10], [11] and [18] where the authors characterized the urn

models defined by Equation 1 for the following cases Qn =
(

a 0
0 a

)
, Qn =

(
0 a
a 0

)
, Qn =

(
a 0
0 b

)
and Qn =

(
0 a
b 0

)
, where a, b are strictly positive integers. Before each draw n we replace a and b

respectively by Xn and Yn. The main idea is to use the stochastic algorithms and martingales in order
to prove that the number of white balls in the urn converges almost surely and to study its fluctuations
around its limit whenever it is possible.
The paper is organized as follows. In Section 2, we give the main results of the paper. In the subsection3.1
we reformulate Theorem 1 in [4] to make it suitable to our model. The proofs of the main results are
detailed in subsection 3.2.

Notation: For a random variable R, we denote by µR = E(R) and σ2
R = Var(R). Note that µX , µY , σ2

X

and σ2
Y are finite.

For xn and yn two sequences of real numbers such that yn 6= 0 for all n, we say that xn is a little-o of yn

if and only if lim
n→+∞

xn

yn
= 0. We then denote xn = o(yn).

2 Main Results

In the present section we give the main results of this worksheet. As mentioned in the introduction, we
study urn models evolving according to the recursion of Equation (1). Recall that in the following we
consider two sequences of random random variables (Xn)n≥1 (resp (Yn)n≥1) iid copies of X (resp Y ),
where X and Y are strictly positive random variables with finite means and variances. We show in the
following that the use of the stochastic algorithms was fruitful and prove that the normalized number
of balls in the urn converges almost surely to a finite limits, furthermore, whenever the matrix Qn is
anti-diagonal, we show that the fluctuation of Wn around its limit is normal. In the case when Qn is
diagonal we are not able yet to characterize these fluctuations.

Theorem 1. Consider the urn model evolving by the matrix Qn =
(

0 Xn

Xn 0

)
. Let δ > 1

2 , we have the

following results

1. The total number of balls in the urn after n draws satisfies for all δ > 1
2

Tn
a.s= mµXn + o(

√
n ln(n)δ), (2)

The number of white balls Wn and blue balls Bn in the urn after n draws satisfy for all δ > 1
2

Wn
a.s=

mµX

2
n + o(

√
n ln(n)δ), (3)

and
Bn

a.s=
mµX

2
n + o(

√
n ln(n)δ). (4)

The following results deal with two versions of central limit theorem of Wn. In distribution we have
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2. Let Σ = m(σ2
X+µ2

X)
12 , then,

lim
n→+∞

Wn − 1
2Tn

Σ
√

n
= N

(
0, 1

)
. (5)

3. Let Σ1 = m(σ2
X+µ2

X)+m2σ2
X

12 , then,

lim
n→+∞

Wn − E(Wn)
Σ1
√

n
= N

(
0, 1

)
. (6)

In the following we show that, unlike the previous theorem, the stochastic algorithm’s theorem does not
work since we fall in the case when the function f ≡ 0. We are able only to give the almost sure limit
of the urn’s composition. These results are not surprising considering that even in the deterministic case
Xn = c (c is constant), then fluctuation of Wn around its limit still unknown.

Theorem 2. Consider the urn model evolving by the matrix Qn =
(

Xn 0
0 Xn

)
. The total number of

balls in the urn after n draws satisfies for all δ > 1
2 ,

Tn
a.s= mµXn + o(

√
n ln(n)δ). (7)

Furthermore, there exists a positive random variable W̃∞, such that the composition of the urn satisfies

Wn
a.s= W̃∞n + o(n), (8)

and
Bn

a.s= (mµX − W̃∞)n + o(n). (9)

Remark: The random variable W̃∞ is absolutely continuous whenever X is bounded.
In the next theorem, the stochastic approximation’s theorem was successful to determine the almost sure
limit of each color and to prove a central limit theorem satisfied by Wn.

Theorem 3. Consider the urn model evolving by the matrix Qn =
(

0 Xn

Yn 0

)
. Let z :=

√
µX√

µX+
√

µY
, we

have the following results:

1. The total number of balls in the urn after n draws satisfies

Tn
a.s= m

√
µX
√

µY n + o(n), (10)

and the number of white and blue balls in the urn after n draws satisfy almost surely

Wn
a.s= m

√
µX
√

µY z n + o(n), (11)

and
Bn

a.s= m
√

µX
√

µY (1− z) n + o(n). (12)

2. Furthermore, the normalized number of white balls in the urn satisfy the following central limit
theorem

Wn − zTn√
n

L−→ N
(
0,

G(z)
3

)
, (13)

where,

G(x) =
4∑

i=0

aix
i,

with
a0 = m2(σ2

X + µ2
X),

a1 = m(1− 2m)(σ2
X + µ2

X),
a2 = 3m(m− 1)(σ2

X + µ2
X)− 2m(m− 1)µXµY ,

a3 = mE(X − Y )2 − 2(m2 −m)
(
σ2

X + µ2
X − µXµY

)
,

and a4 = m(m− 1)E(X − Y )2.
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Theorem 4. Consider the urn evolving by the matrix Qn =
(

Xn 0
0 Yn

)
. We have the following results:

1. If µX > µY , let ρ = µY

µX
,

The total number of balls in the urn after n draws satisfies almost surely

Tn = mµXn + o(n), (14)

Furthermore,
Wn

a.s= mµXn + o(n) (15)

and
Bn

a.s= B∞nρ + o(nρ), (16)

where B∞ is a positive random variable.

2. If µX = µY , The composition of the urn after n draws satisfies almost surely

Tn = mµXn + o(n) (17)

,
Wn = W∞n + o(n) (18)

and
Bn = (µXm−W∞) n + o(n), (19)

where W∞ is a positive random variable.

Remark: The case when µX < µY is obtained by interchanging the colors.
Example: Let m = 1, this particular case was studied by R. Aguech [17]. Using martingales and
branching processes, R. Aguech proved the following results:
If µX > µY ,

Wn = µXn + o(n), Bn = Dnρ and Tn = µXn + o(n),

where ρ = µY

µX
and D is a positive random variable.

If µX = µY ,

Wn = µX
W

W + B
n + o(n) and Bn = µX

B

W + B
n + o(n),

where W and B are positive random variables obtained by embedding some martingales in continuous
time.

3 Proofs

The stochastic algorithm approximation plays a crucial role in the proofs in order to describe the asymp-
totic composition of the urn. As many versions of the stochastic algorithm exist in the literature (see [9]
for example), we adapt the version of H. Renlund in [4, 5].

3.1 A basic tool: Stochastic approximation

Definition 1. A stochastic approximation algorithm (Un)n≥0 is a stochastic process taking values in [0, 1]
and adapted to a filtration Fn that satisfies

Un+1 − Un = γn+1

(
f(Un) + ∆Mn+1

)
, (20)

where (γn)n≥1 and (∆Mn)n≥1 are two Fn-measurable sequences of random variables, f is a function from
[0, 1] onto R and the following conditions hold almost surely.

(i) cl

n ≤ γn ≤ cu

n ,

(ii) E(∆M2
n+1|Fn) ≤ Ku,
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(iii) |f(Un)| ≤ Kf ,

(iv) E[γn+1∆Mn+1|Fn] ≤ Keγ
2
n,

where the constants cl, cu,Ku,Kf , and Ke are positive real numbers.

Definition 2. Let Qf = {x ∈ [0, 1]; f(x) = 0}. A zero p ∈ Qf will be called stable if there exists a
neighborhood Np of p such that f(x)(x− p) < 0 whenever x ∈ Np \ {p}. If f is differentiable, then f ′(p)
is sufficient to determine that p is stable.

Theorem 5. Let Un be a stochastic algorithm defined by Equation (20). If f is continuous, then lim
n→+∞

Un

exists almost surely and is in Qf . Furthermore, if p is a stable zero, then P
(
Un −→ p

)
> 0.

Remark: Theorem 5 is close to Theorem 1 in [4]. Trying to apply Renlund’s theorem we check that
assumption ˜(ii) namely |∆Mn| ≤ Ku cannot be satisfied in our case only if the variables X and Y are
bounded which is not always true. Thus we think to replace that assumption by another satisfied by
such a model while keeping the same conclusion (i.e the almost sure convergence to a stable zero of the
function f).

Proof of Theorem 5. The proof is close to Theorem 1 in [4], for the convenience of the reader, we resume
the proof and we mention the main steps. In fact, the following lemmas are useful.

Lemma 1. Let Vn =
∑n

i=1 γi∆Mi. Then, Vn converges almost surely.

Proof. Set Ai = γi∆Mi and Ãi = E[Ai|Fi−1]. Define the martingale Cn =
∑n

i=1(Ai − Ãi), then

E(C2
n) ≤

n∑
i=1

E(A2
i ) =

n∑
i=1

E(γ2
i ∆M2

i )

≤
n∑

i=1

c2
u

i2
E(∆M2

i ),

if there exists some positive constant Ku such that E[∆M2
n+1|Fn] ≤ Ku, we conclude that Cn is an L2−

martingale and thus converges almost surely.
Next, since ∑

i≥1

|Ãi| ≤
∑
i≥1

E(γi∆Mi|Fi−1)

≤
∑
i≥1

Keγ
2
i−1

≤ Kec
2
u

∑
i≥1

1
(i− 1)2

< ∞,

the series
∑

i≥1 Ai must also converges almost surely.

Lemma 2. Let U∞ =
⋂

n≥1 {Un, Un+1, ...} be the set of accumulation point of {Un} and Qf = {x; f(x) =
0} be the zeros of f . Suppose f is continuous. Then,

P
(
U∞ ⊆ Qf

)
= 1.

Proof. See [4]

Next, we prove the main result of Theorem 5 . If lim
n→+∞

Un does not exist, we can find two rational

numbers in the open interval ] lim inf
n→+∞

Un, lim sup
n→+∞

Un[.

Let p < q be two arbitrary different rational numbers. If we can show that

P
(
{lim inf Un ≤ p} ∩ {lim sup Un ≥ q}

)
= 0,
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then, the existence of the limit will be established and the claim of the theorem follows from Lemma 2.
For this reason, we need to distinguish two different cases whether or not p and q are in the same con-
nected component of Qf .

Case 1: p and q are not in the same connected component of Qf .
See the proof in [4].

Case 2: p and q are in the same connected component of Qf .
Let p and q be two arbitrary rational numbers such that p and q are in the same connected component
of Qf . Assume that lim inf

n→+∞
Un ≤ p and fix an arbitrary ε such a way that 0 ≤ ε ≤ q − p.

We aim to show that lim sup
n→+∞

Un ≤ q i.e, it is sufficient to show that lim sup
n→+∞

Un ≤ p + ε.

In view of Lemma 1, we have Vn =
∑n

i=1 γi∆Mi converges a.s, then, there exists a stochastic N1 > 0
such that for n, m > N1 we have |Vn − Vm| < ε

4 and γn∆Mn ≤ ε
4 .

Let N = max( 4Kf

ε , N1). By assumption, there is some stochastic n > N such that Un − p < ε
2 .

Let
τ1 = inf{k ≥ n;Uk ≥ p} and σ1 = inf{k > τ1;Uk < p},

and define, for n ≥ 1,

τn+1 = inf{k > σn;Uk ≥ p} σn+1 = inf{k > τn;Uk < p}.

For all k we have
Uτk

= Uτk−1 + γτk
(f(Uτk−1) + ∆Mτk

).

Recall that γτk
f(Uτk−1) ≤ Kf

τk−1 ≤
Kf

n and for n ≥ N ≥ 4Kf

ε we have γτk
f(Xτk−1) < ε

4 . It follows,

γτk
(f(Uτk−1) + ∆Mτk

) ≤ Kf

n
+

ε

4
≤ ε

4
+

ε

4
=

ε

2
.

Note that f(x) = 0 when x ∈ [p, q] (p and q are in Qf ). For j such that τk + j − 1 is a time before the
exit time of the interval [p, q] (i.e Uτk+j−1 ∈ [p, q]), we have

Uτk+j = Uτk
+ Vτk+j − Vτk

.

As |Vτk+j − Vτk
| < ε

4 , we have Uτk+j ≤ p + ε
2 + ε

4 ≤ p + ε, the process will never exceed p + ε before the
time σk+1. We conclude that supk≥n Uk ≤ p + ε.
To establish that the almost sure limit of Un is among the stable point set, we refer the reader to [4] to
see a detailed proof.

Theorem 6 (see [5]). Let (Un)n≥0 satisfying Equation (20) such that lim
n→+∞

Un = U?. Let γ̂n :=

nγnf̂(Un−1) where f̂(x) = −f(x)
x−U? . Assume that γ̂n converges almost surely to some limit γ̂. Then,

if γ̂ > 1
2 and if E[(nγn∆Mn)2|Fn−1] → σ2 > 0, we have as n tends to infinity

√
n(Un − U?) D−→ N

(
0,

σ2

2γ̂ − 1

)
.

3.2 Proof of the main results

Proof of Theorem 1. Consider the urn model defined by Equation (1) with Qn =
(

0 Xn

Xn 0

)
. We have

the following recursions:

Wn+1 = Wn + Xn+1(m− ξn+1) and Tn+1 = Tn + mXn+1. (21)

Proof of claim 1
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Lemma 3. Let Zn = Wn

Tn
be the proportion of white balls in the urn after n draws. Then, Zn satisfies

the stochastic approximation algorithm defined by Equation(20) with γn = 1
Tn

, f(x) = µXm(1− 2x) and
∆Mn+1 = Xn+1(m− ξn+1 −mZn)− µXm(1− 2Zn).

Proof. We need to check the conditions of definition 1.

(i) Recall that Tn = T0 + m
∑n

i=1 Xi, with (Xi)i≥1 are iid random variables. It follows, by Rajechman
strong law of large numbers, that

Tn
a.s= µXmn + o(

√
n ln(n)δ), δ >

1
2
, (22)

and we conclude that 1
(mµX+1)n ≤

1
Tn
≤ 2

mµXn , let cl = 1
mµX+1 and cu = 2

mµX
,

(ii) E[∆M2
n+1|Fn] ≤ (6m2 + m)E(X2) + 9m2µ2

X = Ku,

(iii) |f(Zn)| = mµX |1− 2Zn| ≤ 3mµX = Kf ,

(iv) E(γn+1∆Mn+1|Fn) ≤ 1
Tn

E(∆Mn+1|Fn) = 0 = Ke.

Proposition 1. The proportion of white balls in the urn after n draws, Zn, converges almost surely to
1
2 .

Proof of Proposition 1. Since the process Zn satisfies the stochastic approximation algorithm defined by
Equation (20), we apply Theorem 5. As the function f is continuous we conclude that Zn converges
almost surely to 1

2 : the unique stable zero of the function f .

We apply the previous results to the urn composition. As we can write Wn

n = Wn

Tn

Tn

n , we deduce from

Proposition 1 and Equation (22) that Wn

n

a.s=
(

1
2 + o(1)

)(
µXm + o

(
ln(n)δ

√
n

))
, then this corollary follows:

Corollary 1. The number of white balls in the urn after n draws, Wn, satisfies for n large enough

Wn
a.s=

µXm

2
n + o(

√
n ln(n)δ), δ >

1
2
.

Proof of claim 2 We aim to apply Theorem 6. For this reason, we need to find these limits:

lim
n→∞

E[
( n

Tn

)2∆M2
n+1|Fn] and lim

n→∞
− n

Tn
f ′(Zn).

We have

E[∆M2
n+1|Fn] = E(X2

n+1)E[(m− ξn+1 −mZn)2|Fn]) + µ2
XE[(m− 2mZn)2|Fn]

−2µ2
XE[(m− ξn+1 −mZn)(m− 2mZn)|Fn]

= (σ2
X + µ2

X)
[
m2 − 4m2Zn + 4m2Z2

n + mZn(1− Zn)
Tn −m

Tn − 1

]
− µ2

X [m2 + 4m2Z2
n − 4m2Zn].

As n tends to infinity, we have Zn
a.s−→ 1

2 and Tn−m
Tn−1

a.s−→ 1. Then,

lim
n→∞

E[∆M2
n+1|Fn] a.s= (σ2

X + µ2
X)

m

4
and lim

n→∞
− n

Tn
f ′(Zn) a.s= 2.

According to Theorem 6,
√

n(Zn − 1
2 ) converges in distribution to N (0,

σ2
X+µ2

X

12µ2
Xm

). Finally, by writing(
Wn− 1

2 Tn√
n

)
=
√

n(Zn − 1
2 )Tn

n , we conclude using Slutsky theorem.
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Proof of claim 3 We are proving a second version of central limit theorem satisfied by Wn. as the
proof is close to that of Lemma 3 and Theorem 4 in [18], we will mention only the main steps and we
refer the reader to [18] for the details. The idea of the proof is the following: Once we prove that the
variables (Xn(m − ξn))n≥0 are α-mixing variables with a strong mixing coefficient α(n) = o

(
ln(n)δ

√
n

)
,

δ > 1
2 (see Lemma 3 in [18] for detailed computations), the Bernstein method (see [21]) will be perfectly

applied. Consider the same notations as in Theorem 4 in [18] with ξ̃i = Xi(m − ξi) − µX(m − E(ξi)),
Sn = 1√

n

∑n
i=1 ξ̃i and N is the centered normal random variable with variance σ2 = m(σ2

X+µ2
X)+m2σ2

X

12 .
All that we need more in that case is to compute the variance of Wn. In fact we have the following,

Proposition 2. The variance of Wn satisfies

Var(Wn) =
m(σ2

X + µ2
X) + m2σ2

X

12
n + o(

√
n ln(n)δ), δ >

1
2
. (23)

Proof of Proposition 2. Recall that the number of white balls in the urn satisfies Equation (21), then

Var(Wn+1) = Var(Wn) + Var(Xn(m− ξn)) + 2 Cov(Wn, Xn(m− ξn)).

We have Var(Xn(m−ξn)) = (σ2
X +µ2

X)
(
Var(mZn−1)+E

(
mZn−1(1−Zn−1)

Tn−1−m
Tn−1−1

))
+σ2

XE(m−ξn)2.

Using Equation (22) and the fact that Zn
a.s→ 1

2 , we obtain

Var(Wn+1) =
(
1− 2

n
+ o

( ln(n)δ

n
3
2

))
Var(Wn) +

m(σ2
X + µ2

X) + m2σ2
X

4
+ o

( ln(n)δ

√
n

)
= anVar(Wn) + bn,

where an =
(
1− 2

n + o
(

ln(n)δ

n
3
2

))
and bn = m(σ2

X+µ2
X)+m2σ2

X

4 + o
(

ln(n)δ

√
n

)
.

Thus,

Var(Wn) =
( n∏

k=1

ak

)(
Var(W0) +

n−1∑
k=0

bk∏k
j=0 aj

)
.

There exists a constant a such that
∏n

k=1 ak =
ea

n2

(
1 + o

( ln(n)δ

√
n

))
, which leads to

Var(Wn) =
m(σ2

X + µ2
X) + m2σ2

X

12
n + o(

√
n ln(n)δ), δ >

1
2
.

As a conclusion, Wn−E(Wn)√
n

converges in distribution to the variable N .

Proof of Theorem 2. Consider the urn model defined by Equation (1) with Qn =
(

Xn 0
0 Xn

)
. The

following recurrences hold:

Wn+1 = Wn + Xn+1ξn+1 and Tn+1 = Tn + mXn+1. (24)

As Tn is a sum of iid random variables then Tn satisfies the following

Tn
a.s=

µXm

2
n + o(

√
n ln(n)δ); δ >

1
2
. (25)

The processes M̃n =
∏n−1

k=1

(
Tk

Tk+mµX

)
Wn and Ñn =

∏n−1
k=1

(
Tk

Tk+mµX

)
Bn are two Fn positive martingales.

In view of Equation (25), there exists a positive constant γ;
∏n−1

k=1

(
Tk

Tk+mµX

)
a.s=

eγ

n

(
1 + o

( ln(n)δ

√
n

))
for

δ > 1
2 . Thus, there exist nonnegative random variables W̃∞ and B̃∞ such that W̃∞ + B̃∞

a.s= mµX and

Wn

n

a.s−→ W̃∞, and
Bn

n

a.s−→ B̃∞.
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Example: In the original Pòlya urn model [2], when m = 1 and X = C (deterministic), the random
variable W̃∞/C has a Beta(B0

C , W0
C ) distribution [7, 20]. Whereas, M.R. Chen and M. Kuba [11] consid-

ered the case when X = C (non random) and m > 1. They gave moments of all orders of Wn and proved
that W̃∞ cannot be an ordinary Beta distribution.

Remark: Suppose that the random variable X has moments of all orders, let mk = E(Xk), for k ≥ 1.
We have, almost surely, Wn ≤ Tn then, by Minskowski inequality, we obtain E(W 2k

n ) ≤ (mn)2kE(X2k).
Using Carleman’s condition we conclude that, if

∑
k≥1 µ

− 1
2k

2k = ∞, then the random variable W̃∞ is
determined by its moments. Unfortunately, till now we still unable to give exact expressions of moments
of all orders of Wn. But, we can characterize the distribution of W̃∞ in the case when the variable X is
bounded.

Lemma 4. Assume that X is a bounded random variable, then, for fixed W0, B0 and m the random
variable W̃∞ is absolutely continuous.

The proof that W̃∞ is absolutely continuous is very close to that of Theorem 4.2 in [12]. We give the
main proposition to make the proof clearer.

Proposition 3. (see [12]) Let Ω` be a sequence of increasing events such that P(∪`≥0Ω`) = 1. If there
exists nonnegative Borel measurable function {f`}`≥1 such that P

(
Ω` ∩ W̃−1

∞ (B)
)

=
∫

B
f`(x)dx for all

Borel sets B, then, f = lim
l→+∞

f` exists almost everywhere and f is the density of W̃∞.

Let (Ω,F ,P) be a probability space. Suppose that there exists a constant A such that, we have almost
surely, X ≤ A.

Lemma 5. Define the events
Ω` := {W` ≥ mA and B` ≥ mA},

then, (Ω`)`≥0 is a sequence of increasing events, moreover we have P(∪`≥0Ω`) = 1.

Next, we just need to show that the restriction of W̃∞ on Ω`,j = {ω;W`(ω) = j} has a density for each
j, with Am ≤ j ≤ T`−1. Let (pc)c∈supp(X) the distribution of X.

Lemma 6. For a fixed ` > 0, there exists a positive constant κ, such that, for every c ∈ supp(X),
n ≥ ` + 1, Am ≤ j ≤ T`−1 and k ≤ Am(n + 1), we have

m∑
i=0

P(Wn+1 = j + k|Wn = j + k − ci) ≤ pc(1−
1
n

+
κ

n2
). (26)

Proof. According to Lemma 4.1 in [12], for Am ≤ j ≤ T`−1, n ≥ ` and k ≤ Am(n + 1), the following
holds:

m∑
i=0

(
j + c(k − i)

i

)(
Tn − j − c(k − i)

m− i

)
=

Tm
n

m!
+

(1−m− 2c)Tm−1
n

2(m− 1)!
+ ..., (27)

which is a polynomial in Tn of degree m with coefficients depending on W0, B0,m and c only.

Let un,k(c) =
∑m

i=0 P(Wn+1 = j + k|Wn = j + k − ic). Applying Equation (27) to our model we have

un,k(c) = pc

m∑
i=0

(
j + k

i

)(
Tn − j − k

m− i

)(
Tn

m

)−1

= pc

(
Tn

m

)−1(Tm
n

m!
+

(1−m− 2c)
(m− 1)!

Tm−1
n + . . .

)(Tm
n

m!
+

(1−m)
2(m− 1)!

Tm−1
n + . . .

)−1

a.s= pc

(
1− 1

n
+ O

( 1
n2

))
. (28)
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Later, we will limit the proof by mentioning the main steps. For a fixed ` and n ≥ ` + 1, we denote by
vn,j = max

0≤k≤Amn
P
(
W`+n = j + k|W` = j

)
. We have the following inequality:

vn+1,j ≤ max
0≤k≤Am(n+1)

{ m∑
i=0

∑
c∈supp(X)

P(W`+n+1 = j + k|W`+n = j + k − ci)
}

≤ max
0≤k≤Am(n+1)

{ m∑
i=0

∑
c∈supp(X)

P(W`+n+1 = j + k|W`+n = j + k − ci)

×P(W`+n = j + k − ci|W` = j)
}

≤ max
0≤k≤Am(n+1)

m∑
i=0

∑
c∈supp(X)

P(W`+n+1 = j + k|W`+n = j + k − ci)

× max
0≤k̃≤Amn

P
(
W`+n = j + k̃|W` = j

)
≤

∑
c∈supp(X)

pc

(
1− 1

n + l
+

κ

(n + l)2
)
vn,j

=
(
1− 1

n + l
+

κ

(n + l)2
)
vn,j .

This implies that there exists some positive constant C(`), depending on ` only, such that, for a fixed `
and for all n ≥ ` + 1, we get

max
0≤k≤m(n−l)

P
(
Wn = j + k|Wl = j

)
≤

n∏
i=`

(
1− 1

i
+

κ

i2

)
≤ C(`)

n
. (29)

The rest of the proof follows.

Proof of Theorem 3. Consider the urn model evolving by the matrix Qn =
(

0 Xn

Yn 0

)
. According to

Equation (1), we have the following recursions:

Wn+1 = Wn + Xn+1(m− ξn+1) and Tn+1 = Tn + mXn+1 + ξn+1(Yn+1 −Xn+1). (30)

Lemma 7. The proportion of white balls after n draws, Zn, satisfies the stochastic algorithm defined by
(20), where f(x) = m(µX − µY )x2 − 2µXmx + µXm, γn = 1

Tn
and ∆Mn+1 = Dn+1 − E[Dn+1|Fn], with

Dn+1 = ξn+1(Zn(Xn+1 − Yn+1)−Xn+1) + mXn+1(1− Zn).

Proof. We check the conditions of Definition 1, indeed,

(i) recall that Tn = T0 +m
∑n

i=1 Xi +
∑n

i=1 ξi(Yi−Xi), then Tn

n ≤ T0
n + m

n

∑n
i=1 Xi + m

n

∑n
i=1 |Yi−Xi|.

By the strong law of large numbers we have Tn

n ≤ m(µX + µ|Y−X|) + 1. On the other hand, we
have Tn ≥ min

1≤i≤n
(Xi, Yi)mn, thus, the following bound holds

1
(m(µX + µ|Y−X|) + 1)n

≤ 1
Tn

≤ 1
m min

1≤i≤n
(Xi, Yi)n

,

let cl = 1
(m(µX+µ|Y −X|)+1) and cu = 1

m min
1≤i≤n

(Xi, Yi)
,

(ii) E[∆M2
n+1|Fn] ≤ (µ(X−Y )2 + 3µX)(m + m2) + 5m2µX2 + 2m2µXµY + m2(|µX − µY |+ 3µX) = Ku,

(iii) |f(Zn)| ≤ m(|µY − µX |+ 3µX) = Kf ,

(iv) E[ 1
Tn+1

∆Mn+1|Fn] ≤ 1
Tn

E[∆Mn+1|Fn] = 0.
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Proposition 4. The proportion of white balls in the urn after n draws, Zn, satisfies as n tends to infinity

Zn
a.s−→ z :=

√
µX√

µX +
√

µY
. (31)

Proof. The proportion of white balls in the urn satisfies the stochastic approximation algorithm defined
by Equation (20). As the function f is continuous, by Theorem 5, the process Zn converges almost surely
to z =

√
µX√

µX+
√

µY
, the unique zero of f with negative derivative.

Next, we give an estimate of Tn, the total number of balls in the urn after n draws, in order to describe
the asymptotic of the urn composition. By Equation (30), we have

Tn

n
=

T0

n
+

m

n

n∑
i=1

Xi +
m(µY − µX)

n

n∑
i=1

Zi−1 +
1
n

n∑
i=1

[
ξi(Yi −Xi)− E[ξi(Yi −Xi)|Fi−1]

]
.

Since (Xi)i≥1 are iid random variables, then by the strong law of large numbers we have m
n

∑n
i=1 Xi

a.s→
mµX . Via Cesáro lemma, we conclude that 1

n

∑n
i=1 Zi−1 converges almost surely, as n tends to infinity,

to z. Finally, we prove that last term in the right side tends to zero, as n tends to infinity. In fact, let
Gn =

∑n
i=1

[
ξi(Yi −Xi) − E[ξi(Yi −Xi)|Fi−1]

]
, then (Gn,Fn) is a martingale difference sequence such

that
< G >n

n
=

1
n

n∑
i=1

E[∇G2
i |Fi−1],

where ∇Gn = Gn − Gn−1 = ξn(Yn − Xn) − E[ξn(Yn − Xn)|Fn−1] and < G >n denotes the quadratic
variation of the martingale.
By a simple computation, we have the almost sure convergence of E[∇G2

i |Fi−1] to (mz(1−z)+m2z2)(σ2
Y +

σ2
X). Therefore, Cesáro lemma ensures that, <G>n

n converges to (mz(1− z)+m2z2)(σ2
Y +σ2

X), it follows
that Gn

n

a.s−→ 0. Thus, for n large enough we have

Tn

n

a.s−→ m
√

µX
√

µY . (32)

In view of Equation (32), we describe the asymptotic behavior of the urn composition after n draws. One
can write Wn

n = Wn

Tn

Tn

n and Bn

n

a.s= Bn

Tn

Tn

n , using Equations (31, 32) and Slutsky theorem, we have, as n

tends to infinity, Wn

n

a.s−→ m
√

µX
√

µY z and Bn

n

a.s−→ m
√

µX
√

µY (1− z).
Proof of claim 2
Later, we aim to apply Theorem 6. In our model, we have γn = 1

Tn
, then we need to control the following

asymptotic behaviors

lim
n→+∞

E[
( n

Tn

)2

∆M2
n+1|Fn] and lim

n→+∞
− n

Tn
f ′(Zn).

In fact, recall that n
Tn

converges almost surely to 1
m
√

µX
√

µY
and E[∆M2

n+1|Fn] = E[D2
n+1|Fn]+E[Dn+1|Fn]2.

Since E[Dn+1|Fn]2 converges almost surely to f(z)2 = 0, we have,

E[∆2
n+1|Fn] = E

[
Z2

n(Xn+1 − Yn+1)2 − 2ZnXn+1 + Xn+1|Fn

]
E[ξ2

n+1|Fn] + m2E(X2)

+2m2
(
Z2

n(E(X2)− µXµY )− ZnE(X2)
)
.

Using the fact that E[ξ2
n+1|Fn] = mZn(1− Zn)Tn−m

Tn−1 + m2Z2
n and that Zn converges almost surely to z,

we conclude that E[D2
n+1|Fn] converges almost surely to G(z) > 0. Applying Theorem 6, we obtain the

following
√

n(Zn − z) L−→ N
(
0,

G(z)
3m2µXµY

)
. (33)
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But, we can write Wn−zTn√
n

=
√

n
(

Wn

Tn
− z

)
Tn

n . Thus, it is enough to use Slutsky theorem to conclude the
proof.

Proof of Theorem 4. Consider the urn model defined by Equation (1) with Qn =
(

Xn 0
0 Yn

)
. The

process of the urn satisfies the following recursions:

Wn+1 = Wn + Xn+1ξn+1 and Tn+1 = Tn + mYn+1 + ξn+1(Xn+1 − Yn+1). (34)

Lemma 8. If µX 6= µY , the proportion of white balls in the urn after n draws satisfies the stochas-
tic algorithm defined by Equation (20) where γn = 1

Tn
, f(x) = m(µY − µX)x(x − 1) and ∆Mn+1 =

Dn+1 − E[Dn+1|Fn] with Dn+1 = ξn+1(Zn(Yn+1 −Xn+1) + Xn+1)−mZnYn+1.

Proof. We check that, if µX 6= µY , the assumptions of definition 1 hold. Indeed,

(i) Recall that Tn = T0 + m
∑n

i=1 Yi +
∑n

i=1 ξi(Xi − Yi), then via the strong law of large numbers we
have |Tn

n | ≤ mµY + mµ|X−Y | + 1. On the other hand, we have Tn ≥ min1≤i≤n(Xi, Yi)mn, thus,

1
(mµY + mµ|X−Y |)n

≤ 1
Tn

≤ 1
min

1≤i≤n
(Xi, Yi)mn

,

let cl = 1
(mµY +mµ|X−Y |)

and cu = 1

min
1≤i≤n

(Xi, Yi)m
,

(ii) E[∆M2
n+1|Fn] ≤ (2m + m2)(4µX2 + µY 2) + 3m2µY 2 + 2m2µX + 2m2µXµY + 4m2(µX −µY )2 = Ku,

(iii) |f(Zn)| = |m(µY − µX)Zn(Zn − 1)| ≤ 2m|µY − µX | = Kf ,

(iv) E[γn+1∆Mn+1|Fn] ≤ 1
Tn

E[∆Mn+1|Fn] = 0 = Ke.

Proposition 5. The proportion of white balls in the urn after n draws, Zn, satisfies almost surely

lim
n→∞

Zn =


1, if µX > µY ;
0, if µX < µY ;
Z̃∞, if µX = µY ,

where Z̃∞ is a positive random variable.

Proof of Proposition 5. Recall that, if µX 6= µY , Zn satisfies the stochastic algorithm defined in Lemma
8. As the function f is continuous, by Theorem 6 we conclude that Zn converges almost surely to the
stable zero of the function h with a negative derivative, which is 1 if µX > µY and 0 if µX < µY .
In the case when µX = µY , we have Zn+1 = Zn + Pn+1

Tn+1
, where Pn+1 = Xn+1ξn+1 − Zn

(
mYn+1 +

ξn+1(Xn+1 − Yn+1)
)
. Since E[Pn+1|Fn] = 0, then Zn is a positive martingale which converges almost

surely to a positive random variable Z̃∞. As a consequence, we have

Corollary 2. The total number of balls in the urn, Tn, satisfies as n tends to infinity

if µX ≥ µY
Tn

n

a.s−→ mµX .
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Proof. In fact, let Mn =
∑n

i=1 ξi(Xi − Yi)− E[ξi(Xi − Yi)|Fi−1], we have

Tn

n
=

T0

n
+

m

n

n∑
i=1

Yi +
1
n

n∑
i=1

ξi(Xi − Yi)

=
T0

n
+

m

n

n∑
i=1

Yi +
m(µX − µY )

n

n∑
i=1

Zi−1 +
Mn

n
.

As it was proved in claim 1 of Theorem 3, we show that, as n tends to infinity, we have Mn

n

a.s−→ 0. Recall
that, if µX > µX , Zn converges almost surely to 1. Then, using Cesáro lemma, we obtain the limits
requested. If µX = µY , we have 1

n

∑n
i=1 Yi converges to µY = µX .

Using the results above, the convergence of the normalized number of white balls follows immediately.
Indeed, if µX > µY , we have, as n tends to infinity,

Wn

n
=

Wn

Tn

Tn

n

a.s−→ mµX ,

Let G̃n =
(∏n−1

i=1 (1+ mµY

Ti
)
)−1

Bn, then (G̃n,Fn) is a positive martingale. There exists a positive number

A such that
∏n−1

i=1 (1 + mµY

Ti
) ' Anρ; ρ = µY

µX
. Then, as n tends to infinity we have

Bn

nρ

a.s→ B∞,

where B∞ is a positive random variable.

If µX = µY , the sequences
(∏n−1

i=1 (1 + mµX

Ti
)
)−1

Wn and
(∏n−1

i=1 (1 + mµY

Ti
)
)−1

Bn are Fn martingales

such that
(∏n−1

i=1 (1 + mµX

Ti
)
)−1

' Bn, where B > 0, then, as n tends to infinity, we have

Wn

n

a.s→ W∞ and
Bn

n

a.s→ B̃∞,

where W∞ and B̃∞ are positive random variables satisfying B̃∞ = mµX −W∞.

Remark: The case when µX < µY is obtained by interchanging the colors. In fact we have the following
results:

Tn
a.s= mµY n + o(n), Wn = W̃∞nσ + o(n) and Bn = mµY n + o(n),

where W̃∞ is a positive random variable and σ = µX

µY
.
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