Characterization of The DNA by Spectrophotometric Assay and Melting Temperature (TM)

After DNA Extraction... What NEXT P

1. Quantifying DNA concentration

- Is determined by measuring absorbance at **260 nm.** Why?
- At 260 nm double-stranded DNA has specific absorption coefficient of 0.02 (μg/ml)⁻¹cm⁻¹.
- So:
- → Concentration of DNA= (A260 / ε L) x Dilution Factor (DF).

2. DNA purity:

- 1. To detect nucleic acid purity from proteins contamination:
- \rightarrow Calculate A_{260}/A_{280}
- Highly purified DNA samples have a A_{260}/A_{280} nm ratio of (1.8-1.9).
- → What if the ration is below 1.8? What that means?

- 2. To detect nucleic acid purity from carbohydrates, peptides, ethanol or any organic compounds:
- \rightarrow Calculate A_{260}/A_{230}
- Purified DNA samples have a A_{260}/A_{280} nm ratio of (2-2.2).

DNA and protein absorption spectrum:

3. GC content:

- **Denaturation:** is when the double-stranded DNA (dsDNA) unwinds {dissociated "melted"} and separates into single-stranded (ssDNA) by heat or altered pH, which breaks the hydrogen bonds between complementary bases (A = T and G = C).
- Hyperchromic and hypochromic effect.
- The melting temperature (Tm) is the temperature at which 50% of the DNA is unpaired (denatured).

• GC content can be calculated by generating Tm profile (DNA melting curve).

$$%(G+C) = 2.44 (Tm - 69.3)$$

DNA melting curve:

FIGURE 4.4 DNA melting curve. A melting curve of DNA showing $T_{\rm m}$ (the melting temperature) and possible molecular conformations for various degrees of melting.

Relationship between Tm and GC%:

FIGURE 4.5 Effect of G-C content on DNA melting temperature. $T_{\rm m}$ increases with increasing percent of G + C.

What do you notice in the relation between GC content and Tm?

Practical Part

- Determination the concentration and purity of extracted DNA using UV spectrophotometer.
- Determination of DNA melting temperature and GC content percentage.

Principle:

- dsDNA will be separated to ssDNA by heat (denaturation).
- O.D at 260 nm will increase during denaturation... Why?
- Temperature for midpoint of denaturation gives Tm. Why it is important to know Tm of DNA?

The DNA of each species has a specific denaturation curve.. Why?

Results:

• As in the lab sheet

Home Work:

Watch the following videos:

https://www.youtube.com/watch?v=wXiiTW3pflM

https://www.youtube.com/watch?v=U2-5ukpKg_Q