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Introduction to Proofs

Methods of Proving Theorems
Proving mathematical theorems can be difficult. To construct proofs we
need all available ammunition, including a powerful battery of different
proof methods. These methods provide the overall approach and strategy
of proofs. Understanding these methods is a key component of learning
how to read and construct mathematical proofs. One we have chosen a
proof method, we use axioms, definitions of terms, previously proved
results, and rules of inference to complete the proof.
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Introduction to Proofs

Direct Proofs
A direct proof of a conditional statement p → q is constructed when the
first step is the assumption that p is true; subsequent steps are
constructed using rules of inference, with the final step showing that q
must also be true.
A direct proof shows that a conditional statement p → q is true by
showing that if p is true, then q must also be true, so that the
combination p true and q false never occurs. In a direct proof, we assume
that p is true and use axioms, definitions, and previously proven theorems,
together with rules of inference, to show that q must also be true.

DEFINITION 1

The integer n is even if there exists an integer k such that n = 2k, and n
is odd if there exists an integer k such that n = 2k + 1. (Note that every
integer is either even or odd, and no integer is both even and odd.)
Two integers have the same parity when both are even or both are odd;
they have opposite parity when one is even and the other is odd.
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Introduction to Proofs

Example 1

Give a direct proof of the theorem ”If n is an odd integer, then n2 is odd.”
Solution: Note that this theorem states ∀n (P(n)→ Q(n)), where P(n) is
”n is an odd integer” and Q(n) is ”n2 is odd.” To begin a direct proof of
this theorem, we assume that the hypothesis of this conditional statement
is true, namely, we assume that n is odd. By the definition of an odd
integer, it follows that n = 2k + 1, where k is some integer. We want to
show that n2 is also odd. We can square both sides of the equation
n = 2k + 1 to obtain a new equation that expresses n2. When we do this,
we find that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. We can
conclude that n2 is an odd integer (it is one more than twice an integer).
Consequently, we have proved that if n is an odd integer, then n2 is an
odd integer.
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Introduction to Proofs

Example 2

Give a direct proof that if m and n are both perfect squares, then nm is
also a perfect square. (An integer a is a perfect square if there is an
integer b such that a = b2.)
Solution: To produce a direct proof of this theorem, we assume that the
hypothesis of this conditional statement is true, namely, we assume that m
and n are both perfect squares. By the definition of a perfect square, it
follows that there are integers s and t such that m = s2 and n = t2. The
goal of the proof is to show that mn must also be a perfect square when
m and n are; looking ahead we see how we can show this by substituting
s2 for m and t2 for n into mn. This tells us that mn = s2t2. Hence,
mn = s2t2 = (ss)(tt) = (st)(st) = (st)2, using commutativity and
associativity of multiplication. By the definition of perfect square, it
follows that mn is also a perfect square, because it is the square of st,
which is an integer. We have proved that if m and n are both perfect
squares, then mn is also a perfect square.
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Introduction to Proofs

Proof by Contraposition
We need other methods of proving theorems of the form
∀x (P(x)→ Q(x)). Proofs of theorems of this type that are not direct
proofs, that is, that do not start with the premises and end with the
conclusion, are called indirect proofs.
An extremely useful type of indirect proof is known as proof by
contraposition. Proofs by contraposition make use of the fact that the
conditional statement p → q is equivalent to its contrapositive, ¬q → ¬p.
This means that the conditional statement p → q can be proved by
showing that its contrapositive, ¬q → ¬p, is true. In a proof by
contraposition of p → q, we take ¬q as a premise, and using axioms,
definitions, and previously proven theorems, together with rules of
inference, we show that ¬p must follow.
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Introduction to Proofs

Example 3

Prove that if n is an integer and 3n + 2 is odd, then n is odd.
Solution: We first attempt a direct proof. To construct a direct proof, we first
assume that 3n + 2 is an odd integer. This means that 3n + 2 = 2k + 1 for some
integer k. Can we use this fact to show that n is odd? We see that 3n + 1 = 2k,
but there does not seem to be any direct way to conclude that n is odd. Because
our attempt at a direct proof failed, we next try a proof by contraposition. The
first step in a proof by contraposition is to assume that the conclusion of the
conditional statement ”If 3n + 2 is odd, then n is odd” is false; namely, assume
that n is even. Then, by the definition of an even integer, n = 2k for some integer
k . Substituting 2k for n, we find that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).
This tells us that 3n + 2 is even (because it is a multiple of 2), and therefore not
odd. This is the negation of the premise of the theorem. Because the negation of
the conclusion of the conditional statement implies that the hypothesis is false,
the original conditional statement is true. Our proof by contraposition succeeded;
we have proved the theorem ”If 3n + 2 is odd, then n is odd.”
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Introduction to Proofs

Example 4

Prove that if n = ab, where a and b are positive integers, then a ≤
√
n or b ≤

√
n.

Solution: Because there is no obvious way of showing that a ≤
√
n or b ≤

√
n

directly from the equation n = ab, where a and b are positive integers, we
attempt a proof by contraposition.
The first step in a proof by contraposition is to assume that the conclusion of the
conditional statement ”If n = ab, where a and b are positive integers, then
a ≤
√
n or b ≤

√
n” is false. That is, we assume that the statement

(a ≤
√
n) ∨ (b ≤

√
n) is false. Using the meaning of disjunction together with De

Morgans law, we see that this implies that both a ≤
√
n and b ≤

√
n are false.

This implies that a >
√
n and b >

√
n. We can multiply these inequalities

together (using the fact that if 0 < s < t and 0 < u < v , then su < tv) to obtain
ab >

√
n
√
n = n. This shows that ab 6= n, which contradicts the statement

n = ab. Because the negation of the conclusion of the conditional statement
implies that the hypothesis is false, the original conditional statement is true. Our
proof by contraposition succeeded; we have proved that if n = ab, where a and b
are positive integers, then a ≤

√
n or b ≤

√
n.
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Introduction to Proofs

Example 5 (8 in book)

Prove that if n is an integer and n2 is odd, then n is odd.
Solution: We first attempt a direct proof. Suppose that n is an integer and n2 is
odd. Then, there exists an integer k such that n2 = 2k + 1. Can we use this
information to show that n is odd?
There seems to be no obvious approach to show that n is odd because solving for
n produces the equation n = ±

√
2k + 1, which is not terribly useful. Because this

attempt to use a direct proof did not give result, we next attempt a proof by
contraposition. We take as our hypothesis the statement that n is not odd.
Because every integer is odd or even, this means that n is even. This implies that
there exists an integer k such that n = 2k . To prove the theorem, we need to
show that this hypothesis implies the conclusion that n2 is not odd, that is, that
n2 is even. Can we use the equation n = 2k to achieve this? By squaring both
sides of this equation, we obtain n2 = 4k2 = 2(2k2), which implies that n2 is also
even because n2 = 2t , where t = 2k2. We have proved that if n is an integer and
n2 is odd, then n is odd. Our attempt to find a proof by contraposition succeeded.
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Introduction to Proofs

Proofs by Contradiction
Suppose we want to prove that a statement p is true. Furthermore,
suppose that we can find a contradiction q such that ¬p → q is true.
Because q is false, but ¬p → q is true, we can conclude that ¬p is false,
which means that p is true. How can we find a contradiction q that might
help us prove that p is true in this way?
Because the statement r ∧ ¬r is a contradiction whenever r is a
proposition, we can prove that p is true if we can show that
¬p → (r ∧ ¬r) is true for some proposition r . Proofs of this type are
called proofs by contradiction. Because a proof by contradiction does not
prove a result directly, it is another type of indirect proof.
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Introduction to Proofs

Example 6 (9 in book)

Show that at least four of any 22 days must fall on the same day of the
week.
Solution: Let p be the proposition ”At least four of 22 chosen days fall on
the same day of the week”. Suppose that ¬p is true. This means that at
most three of the 22 days fall on the same day of the week. Because there
are seven days of the week, this implies that at most 21 days could have
been chosen, as for each of the days of the week, at most three of the
chosen days could fall on that day. This contradicts the premise that we
have 22 days under consideration. That is, if r is the statement that 22
days are chosen, then we have shown that ¬p → (r ∧ ¬r). Consequently,
we know that p is true. We have proved that at least four of 22 chosen
days fall on the same day of the week.
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Introduction to Proofs

Example 7 (10 in book)

Prove that
√

2 is irrational by giving a proof by contradiction.
Solution: Let p be the proposition ”

√
2 is irrational.” To start a proof by

contradiction, we supposethat ¬p is true. Note that ¬p is the statement
”It is not the case that

√
2 is irrational,” which says that

√
2 is rational.

We will show that assuming that ¬p is true leads to a contradiction. If
√

2
is rational, there exist integers a and b with

√
2 = a

b , where b 6= 0 and a
and b have no common factors (so that the fraction a

b is in lowest terms.)
(Here, we are using the fact that every rational number can be written in
lowest terms.) Because

√
2 = a

b , when both sides of this equation are

squared, it follows that 2 = a2

b2
. Hence, 2b2 = a2. By the definition of an

even integer it follows that a2 is even. We next use the fact that if a2 is
even, a must also be even.
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Introduction to Proofs

Furthermore, because a is even, by the definition of an even integer,
a = 2c for some integer c . Thus, 2b2 = 4c2. Dividing both sides of this
equation by 2 gives b2 = 2c2. By the definition of even, this means that
b2 is even. Again using the fact that if the square of an integer is even,
then the integer itself must be even, we conclude that b must be even as
well. We have now shown that the assumption of ¬p leads to the equation√

2 = a
b , where a and b have no common factors, but both a and b are

even, that is, 2 divides both a and b. Note that the statement that√
2 = a

b , where a and b have no common factors, means, in particular,
that 2 does not divide both a and b. Because our assumption of ¬p leads
to the contradiction that 2 divides both a and b and 2 does not divide
both a and b, ¬p must be false. That is, the statement p, ”

√
2 is

irrational,” is true. We have proved that
√

2 is irrational.
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Introduction to Proofs

Example 8 (11 in book)

Give a proof by contradiction of the theorem ”If 3n + 2 is odd, then n is
odd.”
Solution: Let p be ”3n + 2 is odd” and q be ”n is odd.” To construct a
proof by contradiction, assume that both p and ¬q are true. That is,
assume that 3n + 2 is odd and that n is not odd. Because n is not odd, we
know that it is even. Because n is even, there is an integer k such that
n = 2k . This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).
Because 3n + 2 is 2t , where t = 3k + 1, 3n + 2 is even. Note that the
statement ”3n + 2 is even” is equivalent to the statement ¬p, because an
integer is even if and only if it is not odd. Because both p and ¬p are
true, we have a contradiction. This completes the proof by contradiction,
proving that if 3n + 2 is odd, then n is odd.
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Introduction to Proofs

Note that we can also prove by contradiction that p → q is true by
assuming that p and ¬q are true, and showing that q must be also be
true. This implies that ¬q and q are both true, a contradiction. This
observation tells us that we can turn a direct proof into a proof by
contradiction.

Proofs of Equivalence
To prove a theorem that is a biconditional statement, that is, a statement
of the form p ↔ q, we show that p → q and q → p are both true. The
validity of this approach is based on the tautology
(p ↔ q)↔ (p → q) ∧ (q → p).
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Introduction to Proofs

Example 9 (12 in book)

Prove the theorem ”If n is an integer, then n is odd if and only if n2 is
odd.”
Solution: This theorem has the form ”p if and only if q,” where p is ”n is
odd” and q is ”n2 is odd.” (As usual, we do not explicitly deal with the
universal quantification.) To prove this theorem, we need to show that
p → q and q → p are true. We have already shown (in Example 1) that
p → q is true and (in Example 5 (8 in book)) that q → p is true. Because
we have shown that both p → q and q → p are true, we have shown that
the theorem is true.
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2.2 Proof Methods and Strategy (1.8 in book)
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Proof Methods and Strategy

Introduction

In Section 1.4 (1.7 in book) we introduced many methods of proof
and illustrated how each method can be used. In this section we
continue this effort. We will introduce several other commonly used
proof methods, including the method of proving a theorem by
considering different cases separately. We will also discuss proofs
where we prove the existence of objects with desired properties.

In Section 1.4 (1.7 in book) we briefly discussed the strategy behind
constructing proofs. This strategy includes selecting a proof method
and then successfully constructing an argument step by step, based
on this method.
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Proof Methods and Strategy

Introduction

In this section, after we have developed a versatile arsenal of proof
methods, we will study some aspects of the art and science of proofs.

We will provide advice on how to find a proof of a theorem. We will
describe some tricks of the trade, including how proofs can be found
by working backward and by adapting existing proofs.

When mathematicians work, they formulate conjectures and attempt
to prove or disprove them.
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Proof Methods and Strategy

Exhaustive Proofs

Some theorems can be proved by examining a relatively small number
of examples. Such proofs are called exhaustive proofs, or proofs by
exhaustion because these proofs proceed by exhausting all
possibilities.

An exhaustive proof is a special type of proof by cases where each
case involves checking a single example.

We now provide some illustrations of exhaustive proofs.
To prove a conditional statement of the form (p1 ∨ p2 ∨ · · · ∨ pn)→ q
the tautology
[(p1 ∨ p2 ∨ · · · ∨ pn)→ q]↔ [(p1 → q) ∧ (p2 → q) ∧ · · · ∨ (pn → q)]
can be used as a rule of inference.
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Proof Methods and Strategy

Example 1

Prove that (n + 1)3 ≥ 3n if n is a positive integer with n ≤ 4.
Solution: We use a proof by exhaustion. We only need verify the
inequality (n + 1)3 ≥ 3n when n = 1, 2, 3, and 4.
For n = 1, we have (n + 1)3 = 23 = 8 and 3n = 31 = 3;
for n = 2, we have (n + 1)3 = 33 = 27 and 3n = 32 = 9;
for n = 3, we have (n + 1)3 = 43 = 64 and 3n = 33 = 27;
and for n = 4, we have (n + 1)4 = 54 = 625 and 3n = 34 = 81.
In each of these four cases, we see that (n + 1)3 ≥ 3n. We have used the
method of exhaustion to prove that (n + 1)3 ≥ 3n if n is a positive integer
with n ≤ 4.
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Proof Methods and Strategy

Example 2

Prove that the only consecutive positive integers not exceeding 100 that
are perfect powers are 8 and 9. (An integer is a perfect power if it equals
na, where a is an integer greater than 1.)
Solution: We use a proof by exhaustion. In particular, we can prove this
fact by examining positive integers n not exceeding 100, first checking
whether n is a perfect power, and if it is, checking whether n + 1 is also a
perfect power. A quicker way to do this is simply to look at all perfect
powers not exceeding 100 and checking whether the next largest integer is
also a perfect power. The squares of positive integers not exceeding 100
are 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100. The cubes of positive integers
not exceeding 100 are 1, 8, 27, and 64. The fourth powers of positive
integers not exceeding 100 are 1, 16, and 81.
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na, where a is an integer greater than 1.)
Solution: We use a proof by exhaustion. In particular, we can prove this
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also a perfect power. The squares of positive integers not exceeding 100
are 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100. The cubes of positive integers
not exceeding 100 are 1, 8, 27, and 64. The fourth powers of positive
integers not exceeding 100 are 1, 16, and 81.

(King Saud University) Discrete Mathematics (151) 24 / 57



Proof Methods and Strategy

The fifth powers of positive integers not exceeding 100 are 1 and 32. The
sixth powers of positive integers not exceeding 100 are 1 and 64. There
are no powers of positive integers higher than the sixth power not
exceeding 100, other than 1.
Looking at this list of perfect powers not exceeding 100, we see that n = 8
is the only perfect power n for which n + 1 is also a perfect power. That
is, 23 = 8 and 32 = 9 are the only two consecutive perfect powers not
exceeding 100.
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Proof Methods and Strategy

Proof by Cases

A proof by cases must cover all possible cases that arise in a theorem.

We illustrate proof by cases with a couple of examples. In each
example, you should check that all possible cases are covered.

Example 3

Prove that if n is an integer, then n2 ≥ n.
Solution: We can prove that n2 ≥ n for every integer by considering three
cases, when n = 0, when n ≥ 1, and when n ≤ −1. We split the proof into
three cases because it is straightforward to prove the result by considering
zero, positive integers, and negative integers separately.
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Proof Methods and Strategy

Case (i): When n = 0, because 02 = 0, we see that 02 ≥ 0. It follows
that n2 ≥ n is true in this case.

Case (ii): When n ≥ 1, when we multiply both sides of the inequality
n ≥ 1 by the positive integer n, we obtain n.n ≥ n.1. This implies
that n2 ≥ n for n ≥ 1.

Case (iii): In this case n ≤ −1. However, n2 ≥ 0. It follows that
n2 ≥ n.

Because the inequality n2 ≥ n holds in all three cases, we can conclude
that if n is an integer, then n2 ≥ n.

(King Saud University) Discrete Mathematics (151) 27 / 57



Proof Methods and Strategy

Example 4

Use a proof by cases to show that |xy | = |x ||y |, where x and y are real
numbers. (Recall that |a|, the absolute value of a, equals a when a ≥ 0
and equals −a when a ≤ 0.)
Solution: In our proof of this theorem, we remove absolute values using
the fact that |a| = a when a ≥ 0 and |a| = −a when a < 0. Because both
|x | and |y | occur in our formula, we will need four cases: (i) x and y both
nonnegative, (ii) x nonnegative and y is negative, (iii) x negative and y
nonnegative, and (iv) x negative and y negative. We denote by p1, p2, p3,
and p4, the proposition stating the assumption for each of these four
cases, respectively.
(Note that we can remove the absolute value signs by making the
appropriate choice of signs within each case.)
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Proof Methods and Strategy

Case (i): We see that p1 → q because xy ≥ 0 when x ≥ 0 and y ≥ 0,
so that |xy | = xy = |x ||y |.
To see that p2 → q, note that if x ≥ 0 and y < 0, then xy ≤ 0, so
that |xy | = −xy = x(−y) = |x ||y |. (Here, because y < 0, we have
|y | = −y .)

Case (iii): To see that p3 → q, we follow the same reasoning as the
previous case with the roles of x and y reversed.

Case (iv): To see that p4 → q, note that when x < 0 and y < 0, it
follows that xy > 0. Hence, |xy | = xy = (−x)(−y) = |x ||y |.

Because |xy | = |x ||y | holds in each of the four cases and these cases
exhaust all possibilities, we can conclude that |xy | = |x ||y |, whenever x
and y are real numbers.
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Proof Methods and Strategy

Example 5 (7 in book)

Show that if x and y are integers and both xy and x + y are even, then
both x and y are even.
Solution: We will use proof by contraposition, the notion of without loss
of generality, and proof by cases. First, suppose that x and y are not both
even. That is, assume that x is odd or that y is odd (or both). Without
loss of generality, we assume that x is odd, so that x = 2m + 1 for some
integer m.
To complete the proof, we need to show that xy is odd or x + y is odd.
Consider two cases: (i) y even, and (ii) y odd.
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Proof Methods and Strategy

In (i), y = 2n for some integer n, so that
x + y = (2m + 1) + 2n = 2(m + n) + 1 is odd.

In (ii), y = 2n + 1 for some integer n, so that
xy = (2m + 1)(2n + 1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1
is odd.

This completes the proof by contraposition. (Note that our use of without
loss of generality within the proof is justified because the proof when y is
odd can be obtained by simply interchanging the roles of x and y in the
proof we have given.)
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2.3 Mathematical Induction (5.1 in book)
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Introduction

Many mathematical statements assert that a property is true for all
positive integers.
Examples of such statements are that for every positive integer n:
n! ≤ nn, n3 − n is divisible by 3; a set with n elements has 2n subsets;
and the sum of the first n positive integers is n(n+1)

2 .

A major goal of this chapter, is to give the student a thorough
understanding of mathematical induction, which is used to prove
results of this kind.

Proofs using mathematical induction have two parts. First, they show
that the statement holds for the positive integer 1. Second, they
show that if the statement holds for a positive integer then it must
also hold for the next larger integer.
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Introduction

Mathematical induction is based on the rule of inference that tells us
that if P(1) and ∀k (P(k)→ P(k + 1)) are true for the domain of
positive integers, then ∀n P(n) is true.

Mathematical induction can be used to prove a huge variety of results.

Understanding how to read and construct proofs by mathematical
induction is a key goal of learning discrete mathematics.
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Mathematical Induction

Figure 1: Infinite Ladder.

Suppose that we have an infinite ladder, as
shown in Figure 1, and we want to know whether
we can reach every step on this ladder.We know
two things:

1 We can reach the first rung of the ladder.

2 If we can reach a particular rung of the
ladder, then we can reach the next rung.

Can we conclude that we can reach every rung?
By (1), we know that we can reach the first rung
of the ladder. Moreover, because we can reach
the first rung, by (2), we can also reach the
second rung; it is the next rung after the first
rung. Applying (2) again, because we can reach
the second rung, we can also reach the third rung.
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Mathematical Induction

Continuing in this way, we can show that we can reach the fourth rung, the
fifth rung, and so on. For example, after 100 uses of (2), we know that we
can reach the 101st rung. But can we conclude that we are able to reach
every rung of this infinite ladder? The answer is yes, something we can
verify using an important proof technique called mathematical induction.
That is, we can show that P(n) is true for every positive integer n, where
P(n) is the statement that we can reach the nth rung of the ladder.
Mathematical induction is an extremely important proof technique that
can be used to prove assertions of this type. As we will see in this section
and in subsequent sections of this chapter and later chapters,
mathematical induction is used extensively to prove results about a large
variety of discrete objects.
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Mathematical Induction

Mathematical Induction:
In general, mathematical induction, can be used to prove statements that
assert that P(n) is true for all positive integers n, where P(n) is a
propositional function. A proof by mathematical induction has two parts, a
basis step, where we show that P(1) is true, and an inductive step, where
we show that for all positive integers k, if P(k) is true, then P(k + 1) is
true.

PRINCIPLE OF MATHEMATICAL INDUCTION

To prove that P(n) is true for all positive integers n, where P(n) is a
propositional function, we complete two steps:

1 BASIS STEP: We verify that P(1) is true.

2 INDUCTIVE STEP: We show that the conditional statement
P(k)→ P(k + 1) is true for all positive integers k.

Expressed as a rule of inference, this proof technique can be stated as

(P(1) ∧ ∀k (P(k)→ P(k + 1)))→ ∀n P(n)
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Mathematical Induction

Remark:

In a proof by mathematical induction it is not assumed that P(k) is true
for all positive integers! It is only shown that if it is assumed that P(k) is
true, then P(k + 1) is also true. Thus, a proof by mathematical induction
is not a case of begging the question, or circular reasoning.
When we use mathematical induction to prove a theorem, we first show
that P(1) is true. Then we know that P(2) is true, because P(1) implies
P(2). Further, we know that P(3) is true, because P(2) implies P(3).
Continuing along these lines, we see that P(n) is true for every positive
integer n.
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Mathematical Induction

EXAMPLE 1

Show that if n is a positive integer, then 1 + 2 + · · ·+ n = n(n+1)
2 .

Solution: Let P(n) be the proposition that the sum of the first n positive

integers, 1 + 2 + · · ·+ n , is n(n+1)
2 . We must do two things to prove that

P(n) is true for n = 1, 2, 3, . . . . Namely, we must show that P(1) is true
and that the conditional statement P(k) implies P(k + 1) is true for
k = 1, 2, 3, . . . .
BASIS STEP: P(1) is true, because 1 = 1(1+1)

2 . (The lefthand side of this
equation is 1 because 1 is the sum of the first positive integer. The
right-hand side is found by substituting 1 for n in n(n+1)

2 ).
INDUCTIVE STEP: For the inductive hypothesis we assume that P(k)
holds for an arbitrary positive integer k . That is, we assume that

1 + 2 + · · ·+ k =
k(k + 1)

2
.
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Mathematical Induction

Under this assumption, it must be shown that P(k + 1) is true, namely,

1 + 2 + · · ·+ k + (k + 1) =
(k + 1)[(k + 1) + 1]

2
=

(k + 1)(k + 2)

2
is also true. We add k + 1 to both sides of the equation in P(k), we obtain

1 + 2 + · · ·+ k + (k + 1)
IH
=

k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
This last equation shows that P(k + 1) is true under the assumption that
P(k) is true. This completes the inductive step.
We have completed the basis step and the inductive step, so by
mathematical induction we know that P(n) is true for all positive integers

n. That is, we have proven that 1 + 2 + · · ·+ n =
n(n + 1)

2
for all positive

integers n.
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Mathematical Induction

EXAMPLE 2 (6 in book)

Use mathematical induction to prove that 2n < n! for every integer n with
n ≥ 4. (Note that this inequality is false for n = 1, 2, and 3.)
Solution: Let P(n) be the proposition that 2n < n!.
BASIS STEP: To prove the inequality for n ≥ 4 requires that the basis
step be P(4). Note that P(4) is true, because 24 = 16 < 24 = 4!.
INDUCTIVE STEP: For the inductive step, we assume that P(k) is true for
an arbitrary integer k with k ≥ 4. That is, we assume that 2k < k! for the
positive integer k withk ≥ 4. We must show that under this hypothesis,
P(k + 1) is also true. That is, we must show that if 2k < k! for an
arbitrary positive integer k where k ≥ 4, then 2k+1 < (k + 1)!. We have
2k+1 = 2.2k by definition of exponent

< 2.k! by the inductive hypothesis
< (k + 1)k! because 2 < k + 1
= (k + 1)! by definition of factorial function.
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Mathematical Induction

This shows that P(k + 1) is true when P(k) is true. This completes the
inductive step of the proof.
We have completed the basis step and the inductive step. Hence, by
mathematical induction P(n) is true for all integers n with n ≥ 4. That is,
we have proved that 2n < n! is true for all integers n with n ≥ 4.

(King Saud University) Discrete Mathematics (151) 42 / 57



Mathematical Induction
EXAMPLE 3

Use mathematical induction to show that

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

for all nonnegative integers n.
Solution: Let P(n) be the proposition that
1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1 for the integer n.
BASIS STEP: P(0) is true because 20 = 1 = 21 − 1. This completes the
basis step.
INDUCTIVE STEP: For the inductive hypothesis, we assume that P(k) is
true for an arbitrary nonnegative integer k. That is, we assume that

1 + 2 + 22 + · · ·+ 2k = 2k+1 − 1

To carry out the inductive step using this assumption, we must show that
when we assume that P(k) is true, then P(k + 1) is also true. That is, we
must show that

1 + 2 + 22 + · · ·+ 2k + 2k+1 = 2(k+1)+1 − 1 = 2k+2 − 1

assuming the inductive hypothesis P(k).
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Mathematical Induction

Under the assumption of P(k), we see that
1 + 2 + 22 + · · ·+ 2k + 2k+1 = (1 + 2 + 22 + · · ·+ 2k) + 2k+1

IH
= (2k+1 − 1) + 2k+1

= 2.2k+1 − 1
= 2k+2 − 1.

Note that we used the inductive hypothesis in the second equation in this
string of equalities to replace 1 + 2 + 22 + · · ·+ 2k by 2k+1 − 1. We have
completed the inductive step.
Because we have completed the basis step and the inductive step, by
mathematical induction we know that P(n) is true for all nonnegative
integers n. That is, 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1 for all nonnegative
integers n.
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2.4 Strong Induction (5.2 in book)
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Strong Induction

Strong Induction: Before we illustrate how to use strong induction, we
state this principle again.

STRONG INDUCTION

To prove that P(n) is true for all positive integers n, where P(n) is a
propositional function, we complete two steps:
BASIS STEP: We verify that the proposition P(1) is true.
INDUCTIVE STEP: We show that the conditional statement
[P(1) ∧ P(2) ∧ · · · ∧ P(k)]→ P(k + 1) is true for all positive integers k.
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Strong Induction:

EXAMPLE 1 (2 in book)

Show that if n is an integer greater than 1, then n can be written as the
product of primes.
Solution: Let P(n) be the proposition that n can be written as the
product of primes.
BASIS STEP: P(2) is true, because 2 can be written as the product of one
prime, itself. (Note that P(2) is the first case we need to establish.)
INDUCTIVE STEP: The inductive hypothesis is the assumption that P(j)
is true for all integers j with 2 ≤ j ≤k, that is, the assumption that j can
be written as the product of primes whenever j is a positive integer at
least 2 and not exceeding k. To complete the inductive step, it must be
shown that P(k + 1) is true under this assumption, that is, that k + 1 is
the product of primes.
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Strong Induction:

There are two cases to consider, namely, when k + 1 is prime and when
k + 1 is composite. If k + 1 is prime, we immediately see that P(k + 1) is
true. Otherwise, k + 1 is composite and can be written as the product of
two positive integers a and b with 2 ≤ a ≤ b < k + 1. Because both a and
b are integers at least 2 and not exceeding k , we can use the inductive
hypothesis to write both a and b as the product of primes. Thus, if k + 1
is composite, it can be written as the product of primes, namely, those
primes in the factorization of a and those in the factorization of b.
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Strong Induction

STRONG INDUCTION

Let b be a fixed integer and j a fixed positive integer. The form of strong
induction we need tells us that P(n) is true for all integers n with n ≥ b if
we can complete these two steps:
BASIS STEP: We verify that the propositions
P(b),P(b + 1), . . . ,P(b + j) are true.
INDUCTIVE STEP: We show that
[P(b) ∧ P(b + 1) ∧ · · · ∧ P(k)]→ P(k + 1) is true for every integer
k ≥ b + j .

EXAMPLE

Give a recursive definition of the sequence {an}n∈N, where a0 = 1, a1 = 1
and an = 2an−1 + an−2, for all integer n > 1. Show that an is a an odd
integer for all nonnegative integers n.
Solution:
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Well-Ordering

THE WELL-ORDERING PROPERTY Every nonempty set of nonnegative
integers has a least element.
The well-ordering property can often be used directly in proofs.

EXAMPLE 2 (6 in book)

In a round-robin tournament every player plays every other player exactly
once and each match has a winner and a loser.We say that the players
p1, p2, . . . , pm form a cycle if p1 beats p2, p2 beats p3, . . . , pm−1 beats pm,
and pm beats p1. Use the well-ordering principle to show that if there is a
cycle of length m(m ≥ 3) among the players in a round-robin tournament,
there must be a cycle of three of these players.
Solution: We assume that there is no cycle of three players. Because
there is at least one cycle in the round-robin tournament, the set of all
positive integers n for which there is a cycle of length n is nonempty. By
the well-ordering property, this set of positive integers has a least element
k , which by assumption must be greater than three. Consequently, there
exists a cycle of players p1, p2, p3, . . . , pk and no shorter cycle exists.
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Well-Ordering

Because there is no cycle of three players, we know that k > 3. Consider
the first three elements of this cycle, p1, p2, and p3. There are two
possible outcomes of the match between p1 and p3. If p3 beats p1, it
follows that p1, p2, p3 is a cycle of length three, contradicting our
assumption that there is no cycle of three players. Consequently, it must
be the case that p1 beats p3. This means that we can omit p2 from the
cycle p1, p2, p3, . . . , pk to obtain the cycle p1, p3, p4, . . . , pk of length
k − 1, contradicting the assumption that the smallest cycle has length k .
We conclude that there must be a cycle of length three.

(King Saud University) Discrete Mathematics (151) 51 / 57


